YEAR 3 (2017) MONITORING REPORT ABBEY LAMM STREAM AND WETLAND MITIGATION SITE Alamance County, North Carolina Full Delivery Contract No. 5790

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – March-October 2017

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

January 2018

YEAR 3 (2017) MONITORING REPORT ABBEY LAMM STREAM AND WETLAND MITIGATION SITE Alamance County, North Carolina Full Delivery Contract No. 5790

CAPE FEAR RIVER BASIN CATALOGING UNIT 03030002

Data Collection – March-October 2017

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

January 2018

Table of Contents

1.0	EXECUTIVE SUMMARY	1
	PROJECT SUMMARY	
3.0	METHODOLOGY	6
3.1	Streams	7
3.2		
3.3	Wetland Hydrology	10
3.4	Biotic Community Change	
4.0	REFERENCES	11

Appendices

APPENDIX A. PROJECT BACKGROUND DATA AND MAPS

Figure 1. Vicinity Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2. Current Conditions Plan View
Tables 5A-5E. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
Tables 10a-b. Supplemental Vegetation Transect Data
Remedial Planting Plan Figure
2016 Replant Photos
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Substrate Plots
Table 11a-11e. Baseline Stream Data Summary
Table 12a-12l. Monitoring Data
APPENDIX E. HYDROLOGY DATA
Tables 13a-13b. UT1 and UT3 Channel Evidence
Stream Gauge Graphs
Table 14. Verification of Bankfull Events
Groundwater Gauge Graphs
Table 15. Groundwater Hydrology Data
APPENDIX F. BENTHIC DATA
Results
Habitat Assessment Data Sheets
APPENDIX G. MISCELLANOUS
Figure-2015 Fescue Treatment
2016 Herbicide Application Forms
Supplemental Photographs

1.0 EXECUTIVE SUMMARY

Monitoring Year 3 (2017), of the Abbey Lamm Stream and Wetland Mitigation Site (Site), showed a continued trend towards long-term stability and success of the project. In October of 2017, the NC IRT released Yr. 2 credits as proposed. During the Year-2 site visit with IRT members in April of 2017, cattle were observed in the furthest downstream easement encompassing the old pond bed. No fencing was damaged. However, gates which allow for access to the easement had been left open for some period of time. As a condition to the Yr.-2 credit release, future indications of livestock within the Conservation Easement would result in no further credit release until additional measures are implemented.

RS took a proactive approach in 2017 to ensure cattle would not enter the conservation easement. Continual, bi-monthly or more frequent, visual monitoring of the easement and fencing occurred by RS or sub-consultants. RS replaced one section of the fence when a tree limb fell on the top two strands; no cattle gained access. RS held multiple conversations with the landowner and his ranch hands to ensure they, too, kept a watchful eye on fencing and to make sure all gates were continuously kept closed. RS placed combination padlocks on all gates of the lower section. Through discussions with the owner and his workers, RS assumes trespassers, hunters or locals just looking for empty land off of the main road, had come through the easement without closing the gates which allowed for the cattle access in early 2017. After the April Site visit, no cattle were observed within the easement during the monitoring year.

Scheduled monitoring of stream stability, wetland success, and riparian vegetation was conducted without issue. Monitoring of monumented vegetation plots installed at as-built showed an average site density of 344 planted stems per acre; five vegetation plots recorded planted stems below the Yr. 3 success criteria of 320 stems per acre (plots 14, 13, 12, 7, and 6. Plot-12 is located within the Enhancement-2 portion of the project with an existing, healthy, mature forest. Five random vegetation transects were installed in April of 2017 to monitor 2016 remedial replanting efforts. When resurveyed in October of 2017, these transects showed an average density of 590 stems per acre.

To better understand the stem densities around the plots, 14, 13, 7, and 6, RS had Axiom Environmental survey an additional five linear vegetation transects in the vicinity of the failing plots. The additional transects showed densities well above success criteria. Totals indicated averages of 404, 566, 566, 850, and 2,591 stems per acre. Transect 8 (64 species, avg. = 2,591 stems per acre) is in the old pond bed where natural recruits have done very well. Excluding transect 8 as an outlier, the nine total temporary vegetation transects indicate an average Site density of 593 stems per acre; monumented vegetation plots indicate an average Site density of 593 stems per acre; monumented vegetation plots indicate an average Site density of 344 planted stems per acre and 514 stems per acre while counting natural recruits. With this data in hand, RS believes site vegetation is stable and trending towards meeting success criteria. Bare root planting conducted after construction continues to struggle in areas where remedial planting occurred. It is also clear through the monitoring effort that the remedial planting of 1,250 1-gal pots in December of 2016 has been successful. Sitewide averages are well above the Yr. 3 success standards.

RS is not proposing additional replanting or remedial action for vegetation at this time. RS will continue to use random linear vegetation plots to help assist in vegetation monitoring efforts.

Wetland gauges 1 and 6 did not meet success criteria this year. Additional monitoring gauges are within close proximity and are meeting success criteria by a wide margin. RS believes both gauges may be improperly recording data, no visual issues with the gauges were observed and battery life was not an issue. To provide a more accurate picture of groundwater levels, RS plans to install two additional gauges within \pm 5' of gauges 1 and 6 (to-be labeled 1b and 6b). Visual observations, vegetation and general saturation of the ground around gauges 1 and 6, indicates that these areas are transitioning into forested wetlands. Wetland gauges installed in the old pond bed, show areas adjacent to the new stream are developing into jurisdictional, forested riparian wetland complexes.

As a whole, stream stability monitoring indicated minimal changes in the cross-sections as compared to Yr. 1 data. The channel geometry compares favorably with the proposed conditions as set forth in the detailed mitigation plan and as constructed. All in-stream structures are intact and functioning as designed and no stream areas of concern were identified during Year 3 (2017) monitoring. As part of the stream morphology analysis, bank height ratios were calculated for each cross-section. This value shows the extent of aggradation and/or down-cutting in the streambed. Several cross-sections exhibited small variation in bank height ratio during Year 3 (2017). Results are summarized and discussed in Section 3.0 of this report and further detailed on the cross-section details as necessary.

2.0 PROJECT SUMMARY

The Abbey Lamm Stream and Wetland Mitigation Site (Site) encompasses17.3 acres located approximately 2.0 miles east of Snow Camp in southern Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002050050 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Prior to Site construction, the Site consisted of agricultural land used for livestock grazing and hay production. Streams had been cleared of vegetation, dredged of cobble substrate, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock. In addition, streamside wetlands had been drained by channel incision, soils were compacted, cleared of forest vegetation, and altered by existing land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site included the following.

- Streams have a Best Usage Classification of WS-V, NSW (Nutrient Sensitive Waters)
- Located in a Targeted Local Watershed (TLW)
- According to the *Cape Fear River Basin Restoration Priorities 2009*, benthic ratings in the TLW vary from "Fair" to "Good-Fair" indicating a need for improvement of aquatic conditions in the watershed (NCDMS 2009)
- A Significant Natural Heritage Area is located immediately east of the Site

The Site is not included in a Local Watershed Plan; however, this project meets overall goals of the Local Watershed Plans including 1) reduce sediment loading, 2) reduce nutrient loading, 3) manage stormwater runoff, 4) reduce toxic inputs, 5) provide and improve instream habitat, 6) provide and improve terrestrial habitat, 7) improve stream stability, and 8) improve hydrologic function. The following table summarizes the project goals/objectives and proposed functional uplift based on Site restoration activities and observations of two reference areas located in the vicinity of the Site.

Purposefully Left Blank

Project Goal/Objective	How Goal/Objective will be Accomplished		
	Improve Hydrology		
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows		
Restore Wooded Riparian Buffer	Planting a woody riparian buffer		
Improve Microtopography	Scarifying soils to reduce compaction and hoof shear due to cattle		
Restore Stream Stability			
Increase Sediment Transport	Building a new channel, planting a woody riparian buffer, and removing cattle		
Improve Stream Geomorphology			
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring		
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation		
Increase Subsurface Storage and Retention	Raising the stream bed elevation		
	Improve Water Quality		
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer and installing 8 marsh treatment areas		
Increase Thermoregulation	Planting a native, woody riparian buffer		
Reduce Stressors and Sources of Pollution	Removing cattle and installing 8 marsh treatment areas		
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, restoring appropriate inundation/duration, and installing 8 marsh treatment areas		
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, and installing 8 marsh treatment areas		
	Restore Habitat		
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer		
Restore Stream-side Habitat	Planting a woody riparian buffer		
Improve Vegetation Composition and Structure			

Project Goals and Objectives

Project construction occurred between January and April 2015. Planting was completed in April 2015. Site activities include the restoration of perennial and intermittent stream channels, enhancement (level II) of perennial and intermittent stream channels, and restoration of riparian wetlands. A total of **4731.6 Stream Mitigation Units (SMUs) and 1.0 Riparian Wetland Mitigation Units (WMUs)** are being offered as depicted in the following tables.

Stream Mitigation Type	Perennial Stream Counting Towards Mitigation Credits (linear feet)	Intermittent Stream Counting Towards Mitigation Credits (linear feet)	Ratio	Stream Mitigation Units
Restoration	2629	1771	1:1	4400
Enhancement (Level II)	403	426	2.5:1	331.6
Totals	3032	2197		4731.6

Wetland Mitigation Type	Acreage	Ratio	Riparian Wetland Mitigation Units	
Riparian Restoration	1.0	1:1	1.0	
Riparian Enhancement*	0.4			
Totals	1.4		1.0	

*Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving success criteria. The following summarizes stream success criteria related to goals and objectives.

Project Goal/Objective	Stream Success Criteria				
Improve Hydrology					
Restore Floodplain Access	Two overbank events will be documented, in separate years, during the monitoring period.				
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.				
Improve Microtopography	Removal of cattle and scarification of soils during construction.				
Restore Stream Stability	Cross-sections, monitored annually, will be compared to as-built				
Improve Stream Geomorphology	measurements to determine channel stability and maintenance of channel geomorphology.				
Increase Surface Storage and Retention	Removal of cattle, installation of 8 marsh treatment areas,				
Restore Appropriate Inundation/Duration	scarification of soils during construction, documentation of two overbank events in separate monitoring years, and attaining Wetland and Vegetation Success Criteria.				
Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and attaining Wetland Success Criteria.				
Increase Sediment Transport	Pebble counts documenting coarsening of bed material from pre- existing conditions.				
Im	prove Water Quality				
Increase Upland Pollutant Filtration	Installation of 8 marsh treatment areas and attaining Wetland and Vegetation Success Criteria				
Increase Thermoregulation	Attaining Vegetation Success Criteria				
Reduce Stressors and Sources of Pollution	Removal of cattle and installation of 8 marsh treatment areas				
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria				
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria				
Restore Habitat					
Restore In-stream Habitat	Reincorporating natural substrate removed from existing Site streams and stockpiled onsite into proposed stream beds, pebble counts documenting coarsening of bed material from pre-existing conditions, and attaining Vegetation Success Criteria (Section 8.3.1)				
Restore Stream-side Habitat	Attaining Vegetation Success Criteria				
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria				

Intermittent channels (UT 1 and UT 3) were questioned by IRT members with respect to jurisdictional status. Success criteria in these reaches require surface water flow within the stream channels during years with normal climactic conditions for at least 30 consecutive days. Furthermore, IRT members require these systems to have a discernible ordinary high water mark, which will be evaluated and considered towards project success. Iron-oxidizing bacteria and hydric soils within these reaches will be documented by photograph throughout the monitoring period, and will be considered signs of intermittent channels by IRT members.

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving success criteria. The following summarizes wetland success criteria related to goals and objectives.

Project Goal/Objective	Wetland Success Criteria				
Improve Hydrology					
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.				
Improve Microtopography	Removal of cattle and scarification of soils during construction.				
Increase Surface Storage and Retention	Removal of cattle, scarification of soils during construction,				
Restore Appropriate Inundation/Duration	documentation of two overbank events in separate monitoring years, attaining Vegetation Success Criteria, and				
Increase Subsurface Storage and Retention	documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions.				
Improv	e Water Quality				
Increase Upland Pollutant Filtration	Installation of 8 marsh treatment areas and attaining Wetland and Vegetation Success Criteria.				
Reduce Stressors and Sources of Pollution	Removal of cattle and installation of 8 marsh treatment areas.				
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.				
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria.				
Res	Restore Habitat				
Restore Stream-side Habitat	Attaining Vagatation Success Critaria				
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.				

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project, gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. Based on growing season information outlined in the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Environmental Laboratory 2012), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed. The jurisdictional determination will not supersede monitoring data, or overturn a failure in meeting success criteria; however, this information may be used by the IRT, at the discretion of the IRT, to make a final determination on Site wetland re-establishment success.

Year	Soil Temperatures/Date Bud	Monitoring Period Used for	10 Percent of
1 ear	Burst Documented	Determining Success	Monitoring Period
2015 (Year 1)		April 8*-October 22 (198 days)	20 days
2016 (Year 2)	Bud burst and soil temperatures documented on March 30, 2016	March 30-October 22 (207 days)	21 days
2017 (Year 3)	Bud burst and soil temperatures documented on February 28, 2017	February 28-October 22 (237 days)	24 days
2018 (Year 4)			
2019 (Year 5)			

Summary of Monitoring Period/Hydrology Success Criteria by Year

*Gauges were installed on April 8 during year 1 (2015), so this date was used as the start of the growing season.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

3.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the latest guidance by NCDMS dated November 7, 2011 (*Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected.

3.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Post construction, permanently-monumented cross-sections were installed throughout the Site, at approximately 50 foot intervals. Sixty monitoring cross-sections will be measured annually. Cross-section locations are depicted on Figure 2 (Appendix B); data is included in Appendix D. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in each of the seven years of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area.

As a whole, monitoring measurements indicate minimal changes in the cross-sections as compared to asbuilt and subsequent monitoring year datum. The channel geometry compares favorably with the proposed conditions as set forth in the detailed mitigation plan and as constructed. All in-stream structures are intact and functioning as designed. No stream areas of concern were identified during year 3 (2017) monitoring. Tables for annual quantitative assessments are included in Appendix D.

As part of the stream morphology analysis (Table 12a-l, Appendix D), bank height ratios were calculated for each cross-section. This value shows the extent of aggradation and/or down-cutting in the streambed. Several cross-sections exhibited small variation in bank height ratio during Year 3 (2017). These are summarized and discussed in the table below:

XS #	Reach	BHR	Notes
2	Main Down	1.09	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
5	Main Down		Sediment deposition in pool appears natural and is not expected to lead to instability.
6	Main Down	1.31	Channel constructed in lake bed, with stabilization occurring in years 1, 2, and 3 monitoring. No problems visible in this reach.
8	Main Down		Sediment transport appears to be natural and has stabilized during years 1 to 3 monitoring. No problems appears to be occurring in this reach.
9	Main Down	1.08	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

XS #	Reach	BHR	Notes
13	Main Down	1.44	Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel. Depth is decreasing since MY-01 and is stabilizing in MY-02 and MY-03.
14	Main Down	1.36	Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel. Depth is decreasing since MY-01 and is stabilizing in MY-02 and MY-03.
16 - 19	Main E-II		BHR varies through this reach; however, the reach is stable.
20	Main Up		Sediment has aggraded behind a bedrock sill. Sediment has been stable MY-01 through MY-03.
21	Main Up	1.14	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
22	Main Up	1.57	Overall channel area has decreased. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.
23	Main Up	1.4	Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.
31	Main Up	1.2	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
Reach	Switch		
3	UT 1	1.67	Elevated BHR results from shallow channel depth. UT 1 appears stable throughout.
6	UT 1	1.29	Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.
1	UT 1a	1.2	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
2	UT 1a	1.33	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
Reach	Switch		
1	UT 2	1.14	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
2	UT 2	1.2	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
5	UT 2	1.3	Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.
6	UT 2	1.17	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
Reach	Switch		
3	UT 3	1.2	UT 3 has slight resorting of fill material in the channel; however, area has primarily remained constant and no significant erosion is apparent.
5	UT 3	1.38	Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.
8	UT 3	1.5	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
9	UT 3	1.6	Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 2 years. No problems are visible in this reach.
11	UT 3	1.5	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.
12	UT 3	2	Minor downcutting between two large rocks. Riffle is immediately upstream from a cross vane and appears stable. Small channel so BHR results are elevated.
14	UT 3	1.14	No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Intermittent stream reaches, including UT 1 and UT 3, received priority-1 stream restoration to restore adjacent wetlands and elevate stream function. Priority 1 stream restoration along intermittent stream reaches was discussed by IRT members with regard to adequate base flow once stream restoration was completed. Therefore, stream flow gauges were installed in the upper and lower reaches of UT 1 and UT 3 to catalog flow for 30 consecutive days. Channel formation was evident in both UT 1 and UT 3 in years 1-3 (2015-2017) (Tables 13a-13b, Appendix E). The approximate location of stream flow gauges are depicted on Figure 2 (Appendix B); gauge data is included in Appendix E.

3.2 Vegetation

After planting was completed in April 2015, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. For quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Year 3 (2017) stem count measurements, taken in July 2017, indicate an average of 344 planted stems per acre (excluding livestakes) across the Site. Nine of fourteen individual vegetation plots met success criteria based on planted stems alone. Poor survival of planted stems is concentrated within the upland areas of the conservation easement, approximately 15-20 feet from the top of bank to the edge of the conservation easement. Visually, planted stems along stream corridors are doing well. Low stem survival can be attributed to later than desired original planting date, poor/compacted soils, and sporadic rain events resulting in long periods of drought like conditions during the years 1 and 2 growing seasons. Heavy herbaceous competition in the first year (2015) growing season had effected planted stems; therefore, on March 10, 2016 open areas in the upper 2/3 of the Site were treated with a pre-emergent and grass specific herbicide (Appendix G). The treatment was successful in knocking back herbaceous growth; however, by the end of the growing season the amount of new herbaceous growth was similar to the density observed in 2015. RS does not plan to continue this form of treatment.

Working with Carolina Silvics, RS planted 1,250 1-gallon pots during the week of December 20th, 2016, which included the following species: *Betula nigra, Fraxinus pennsylvanica, Platanus occiendentalis, Quercus falcata, Quercus nigra, Quercus palustris, Quercus phellos,* and *Quercus rubra*. A remedial planting plan figure detailing location of planting and density, in addition to photographs, are provided in Appendix C. Five temporary 50-meter by 2-meter transects were established to monitoring replanting efforts. Stems counts were performed in April 2017 and then again in October 2017. Five additional transects were added, 10 total, to survey areas around vegetation plots which did not meet success criteria based on planted stems alone. Stem counts in these plots were well above success standards ranging from 404-2,591 stems per acre; results are summarized in Tables 10a-b (Appendix C) and plot transect locations are depicted on Figure 2 (Appendix B).

Of note, no remedial planting was performed within forested areas, i.e vegetation plot 12. This is an enhancement area within an existing hardwood forest. Given planted species surviving within vegetation plot 12 and surrounding density of the existing forest, RS did not feel it was necessary to replant this area although vegetation plot 12 is not meeting year 3 success criteria.

RS is not proposing additional replanting or remedial action for vegetation at this time. RS will continue to use random linear vegetation plots to help assist in vegetation monitoring efforts.

3.3 Wetland Hydrology

Six groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Groundwater gauges were installed in larger wetland sections along UT 1, UT 2, and the main stem channel. Gauges were installed at various elevations within the floodplain to accurately determine hydrology of wetland re-establishment areas. Approximate locations of wetland groundwater monitoring gauges are depicted on Figure 2 (Appendix A) and As-built Plan Sheets (Appendix D). Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and floodplain crest gauges will confirm overbank flooding events.

Wetland gauges 1 and 6 did not meet success criteria this year. Additional monitoring gauges are within close proximity and are meeting success criteria by a wide margin. RS believes both gauges may be improperly recording data, no visual issues with the gauges were observed and battery life was not an issue. To provide a more accurate picture of groundwater levels, RS plans to install two additional gauges within \pm 5' of gauges 1 and 6 (to-be labeled 1b and 6b). Visual observations, vegetation and general saturation of the ground around gauges 1 and 6, indicates that these areas are transitioning into forested wetlands. Wetland gauges installed in the old pond bed, show areas adjacent to the new stream are developing into jurisdictional, forested riparian wetland complexes.

	Success Cr	iteria Achieved/Ma	x Consecutive Days	During Gr	owing Seaso	on (Percenta	ge)
Gauge	Year 1 (2015) February 1 Growing Season Start	Year 2 (2016) March 30 Growing Season Start	Year 3 (2017) February 28 Growing Season Start	Year 4 (2018)	Year 5 (2019)	Year 6 (2020)	Year 7 (2021)
1	No*/10 days (3.8 percent)	Yes/75 days (36 percent)	No/12 days (5.1 percent)				
2	Yes/35 days (13.3 percent)	Yes/122 days (59 percent)	Yes/82 days (35 percent)				
3	No*/14 days (5.3 percent)	Yes/48 days (23 percent)	Yes/135 days (57 percent)				
4	No*/14 days (5.3 percent)	Yes/100 days (48 percent)	Yes/78 days (33 percent)				
5	Yes/32 days (12.1 percent)	Yes/75 days (36 percent)	Yes/48 days (20 percent)				
6	No*/9 days (3.4 percent)	No/7 days (3.4 percent)	No/5 days (2.1 percent)				
7**		Yes/116 days (56 percent)	Yes/153 days (65 percent)				
8**		Yes/206 days (100 percent)	Yes/211 days (89 percent)				
9**		Yes/54 days (26 percent)	No [/] /12 days (5.1 percent)				

*Due to Site construction activities, groundwater gauges were not installed until April 8, 2015. It is expected that all gauges would meet success criteria at the beginning of the growing season.

**These gauges were installed on March 8, 2016 to show wetland establishment within the old pond bed.

[^]This gauge malfunctioned through the majority of the growing season due to continuous inundation. It is expected that this gauge would have met success criteria had it functioned properly.

3.4 Biotic Community Change

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track the changes during the monitoring period. The benthic macroinvertebrate community will be sampled using NCDWQ protocols found in the *Standard Operating Procedures for Benthic Macroinvertebrates* (NCDWQ 2006) and *Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects* (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with postconstruction restored conditions.

Two benthic macroinvertebrate monitoring locations will be established within restoration reaches. Postrestoration collections will occur in the approximate location of the prerestoration sampling. Benthic macroinvertebrate samples will be collected from individual reaches using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Preproject biological sampling occurred on June 26, 2014; postproject monitoring will occur in June of monitoring years 2-5.

Identification of collected organisms will be performed by personnel with North Carolina Division of Water Resources (NCDWR) or by a NCDWR certified laboratory. Other data collected will include D50 values/NCDWR habitat assessment forms. Biological sampling for year 3 (2017) occurred on June 13, 2017. The samples were sent to Pennington and Associates, a NCDWQ certified laboratory, for identification and analysis. The results and Habitat Assessment Dataforms are included in Appendix F.

4.0 **REFERENCES**

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329

- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Ccarolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

APPENDIX A

PROJECT BACKGROUND DATA AND MAPS

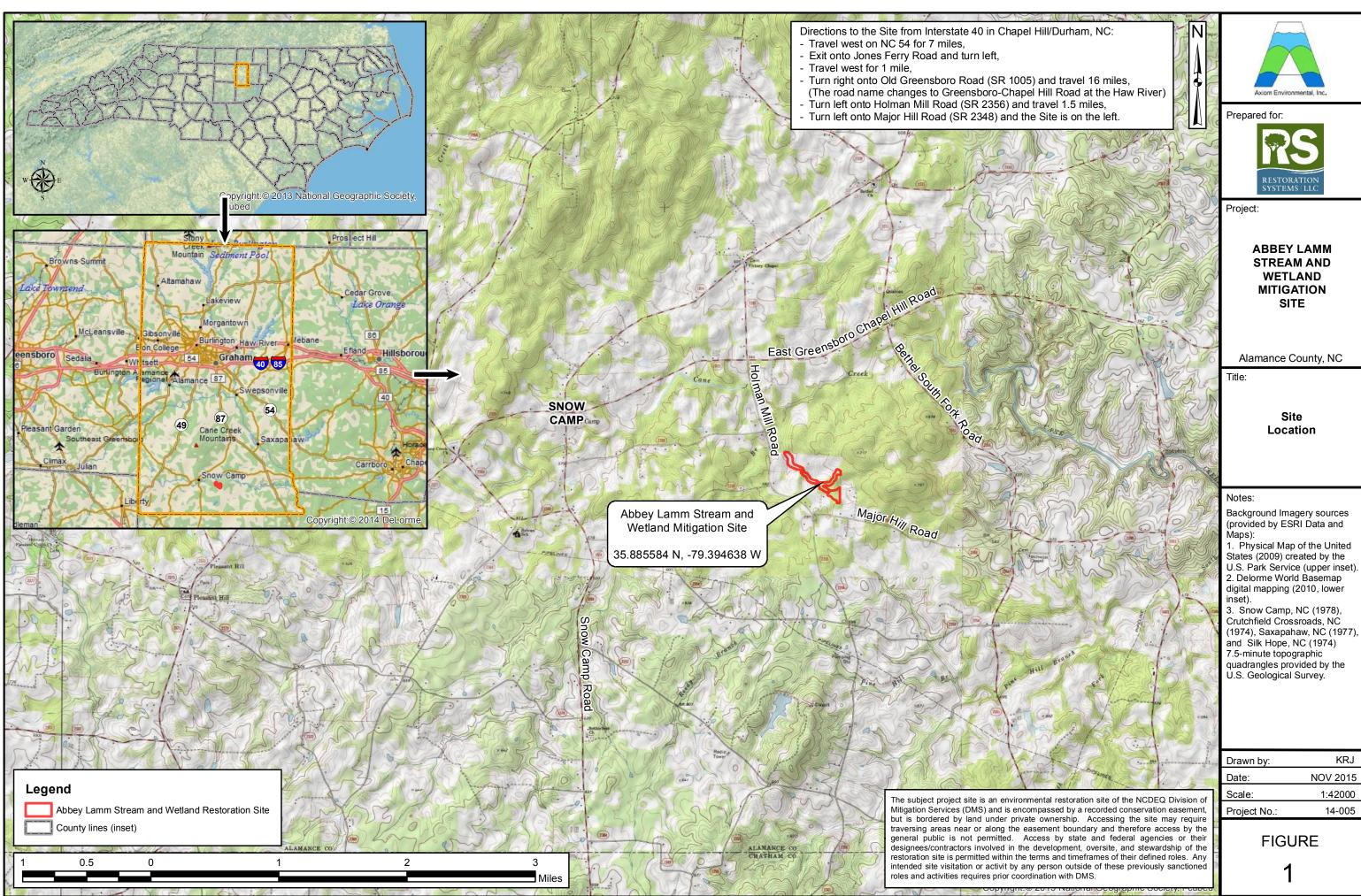

Figure 1. Vicinity Map

Table 1. Project Components and Mitigation Credits

Table 2. Project Activity and Reporting History

Table 3. Project Contacts Table

Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation CreditsAbbey Lamm Restoration Site

·			Mitigat	ion Credits				
Stream	Stream		Rij	parian Wetland		Nonriparian Wetland		
Restoration	Enhancemen	t	Restoration		Restoration			
4400	331.6	6 1.0						
	Projects Components							
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment	
UT 1 Station 00+21 to 05+62	531	PI	Restoration	541	1:1	541		
UT 1a Station 00+00 to 01+54	154	PI	Restoration	154-8= 146	1:1	146	8 lf of UT1a located outside of easement is not credit generating	
UT 2 Station 00+22 to 04+77	502	PI	Restoration	455	1:1	455		
UT 3a Station 00+00 to 00+93	93		EII	93	2.5:1	37.2		
UT 3b Station 00+00 to 01+43	143		EII	143	2.5:1	57.2		
UT 3c Station 00+00 to 01+90	190		EII	190	2.5:1	76		
UT 3 Station 00+93 to 11+77	1021	PI	Restoration	1084	1:1	1084		
Mainstem Channel Station 04+77 to 16+31	1098	PI	Restoration	1154-61-63= 1030	1:1	1030	61 If and 63 If of Mainstem located outside of easement at two crossings are not credit generating	
Mainstem Channel Station 16+31 to 20+59	428		EII	428-25=403	2.5:1	161.2	25 If of Mainstem located outside of easement are not credit generating	
Mainstem Channel Station 20+59 to 32+58	NA	PI	Restoration	1199-55= 1144	1:1	1144	55 If of Mainstem located outside of easement are not credit generating	
			Compone	nt Summation				
Restoration Level	Stream (linea)	r footage)	Riparian Wetland (acreage)		eage)	Nonriparian Wetland (acreage)		
Restoration	4400*	*		1.0				
Enhancement (Level 1)								
Enhancement (Level II)	829**	*						
Enhancement	Enhancement 0.4***							
Totals	5229							
Mitigation Units	4731.6 SI	MUs		1.0 Riparian WMU	S	0.00 Nonriparian WMUs		

*An additional 187 linear feet of stream restoration is proposed outside of the easement and is therefore not included in this total or in mitigation credit calculations. **An additional 25 linear feet of stream enhancement (level II) is proposed outside of the easement and is therefore not included in this total or in mitigation credit calculations.

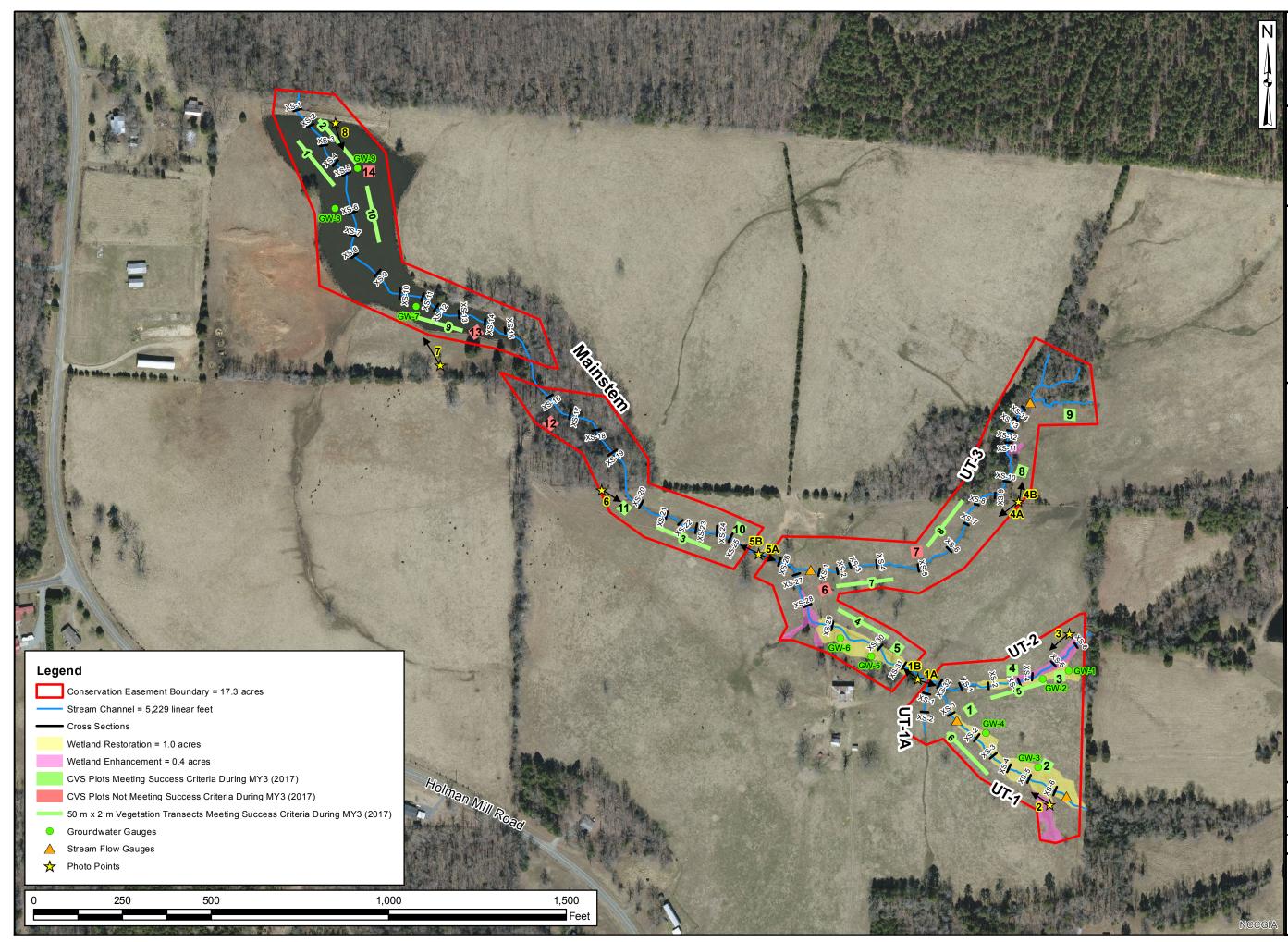
***Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

Abbey Lamm Restoration Site								
Activity or Deliverable	Stream Monitoring Complete	Vegetation Monitoring Complete	Data Collection Complete	Completion or Delivery				
Technical Proposal (RFP No. 16-005568)				October 2013				
EEP Contract No. 5790				February 2014				
Mitigation Plan				September 2014				
Construction Plans				September 2014				
Construction Earthwork				April 3, 2015				
Planting				April 7, 2015				
As-Built Documentation	April 14, 2015	April 9, 2015	May 2015	July 2015				
Year 1 Monitoring	October 20, 2015	September 23, 2015	October 2015	November 2015				
Fescue Treatment				March, 2016				
Year 2 Monitoring	April 7, 2016	July 6, 2016	October 2016	December 2016				
Remedial Planting				December 8, 2016				
Year 3 Monitoring	March 27, 2017	July 19, 2017	October 2017	November 2017				

Table 2. Project Activity and Reporting HistoryAbbey Lamm Restoration Site

Table 3. Project Contacts TableAbbey Lamm Restoration Site

Abbey Lamm Restoration Site					
Full Delivery Provider	Restoration Systems				
	1101 Haynes Street, Suite 211				
	Raleigh, North Carolina 27604				
	Worth Creech				
	919-755-9490				
Designer	Axiom Environmental, Inc.				
	218 Snow Avenue				
	Raleigh, NC 27603				
	Grant Lewis				
	919-215-1693				
Construction Plans and Sediment and	Sungate Design Group, PA				
Erosion Control Plans	915 Jones Franklin Road				
	Raleigh, NC 27606				
	Joshua G. Dalton, PE 919-859-2243				
Construction Contractor	Land Mechanic Designs				
	780 Landmark Road				
	Willow Spring, NC 27592				
	Lloyd Glover 919-639-6132				
Planting Contractor	Carolina Silvics, Inc.				
	908 Indian Trail Road				
	Edenton, NC 27932				
	Mary-Margaret McKinney 252-482-8491				
As-built Surveyor	K2 Design Group				
	5688 US Highway 70 East				
	Goldsboro, NC 27534				
	John Rudolph 919-751-0075				
Baseline Data Collection	Axiom Environmental, Inc. 218 Snow Avenue				
	Raleigh, NC 27603 Grant Lewis 919-215-1693				
	Utalit Lewis 717-213-1073				


Table 4. Project Attribute TableAbbey Lamm Restoration Site

Abbey Lamm Restoration Site	t Inf	ormation							
Project Name			Lamm Resto	ration Site					
Project County			e County, No						
Project Area (acres)		7 Human	17.3						
Project Coordinates (latitude & latitude)		35.88	5584°N, 79.3	94638°W					
Project Watershe	ed Su			1000 11					
Physiographic Province		J J J	Piedmont						
Project River Basin			Cape Fear	•					
USGS HUC for Project (14-digit)			03030002050						
NCDWR Sub-basin for Project			03-06-04						
Project Drainage Area (acres)			257						
Percentage of Project Drainage Area that is			<2%						
Impervious			<2%						
Reach Summary Information									
Parameters		Main	UT 1	UT 2	UT 3				
Length of reach (linear feet)		3258	695	455	1510				
Valley Classification			alluv	1					
Drainage Area (acres)		257	49	56	32				
NCDWR Stream ID Score			29	35.25	28				
NCDWR Water Quality Classification			WS-V, I		•				
Existing Morphological Description (Rosgen 1996)		Eg5/Fc5	E/G 5	C/G 5	Eg5				
Existing Evolutionary Stage (Simon and Hupp 198	6)	III/IV	II/III	IV/III	III				
Underlying Mapped Soils		Efland silt loa silt loam, Moo							
Drainage Class		Well-drained,	well-drained	, well-draine	d, poorly to				
Drainage Class		well-dr	ained, modera	ately well-dra	ained				
Hydric Soil Status			Nonhy	dric					
Slope		0.0179		0.0256-0.0362	2				
FEMA Classification			NA						
Native Vegetation Community		Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest							
Watershed Land Use/Land Cover (Site)		40% forest, 58% agricultural land, <2% low density residential/impervious surface							
Watershed Land Use/Land Cover (Cedarock Refere	ence	65% forest, 30% agricultural land, <5% low density							
Channel)	residential/impervious surface								
		<5%							

APPENDIX B

VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV)Tables 5A-5E. Visual Stream Morphology Stability AssessmentTable 6. Vegetation Condition AssessmentStream Station PhotographsVegetation Plot Photographs

Axiom Environmental, Inc.

Prepared for:

Project:

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

Alamance County, NC

Title:

Current Conditions Plan View

Notes:

Background Imagery source: 2014 aerial photogarphy provided by the NC OneMap program (online, provided by the NC Geographic Information Coordination Council)

Drawn by:	KRJ
Date:	NOV 2017
Scale:	1:3000
Project No.:	14-005

FIGURE

2

e 5A Visual Stream Morphology Stability Assessment

Reach ID Assessed Length Lamm Mainstem 2781

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	56	56			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	55	55			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	55	55			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	55	55			100%			
		2. Thalweg centering at downstream of meander (Glide)	55	55			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	14	14			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	14	14			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	14	14			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	14	14			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	14	14			100%			

Table 5A Reach ID

Table 5B Reach ID

Visual Stream Morphology Stability Assessment Lamm UT1-A

Assessed Length

Lamm UT1-A 154

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	5	5			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	5	5			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		2. Thalweg centering at downstream of meander (Glide)	5	5			100%			
		•	•				•			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5C

Visual Stream Morphology Stability Assessment

Assessed Length

Lamm UT1 541

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Stabilizing Woody
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	24	24			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	24	24			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		2. Thalweg centering at downstream of meander (Glide)	24	24			100%			
		·								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Reach ID

Table 5D Reach ID

Visual Stream Morphology Stability Assessment

Assessed Length

Lamm UT2 455

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	23	23			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	22	22			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	22	22			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	22	22			100%			
		2. Thalweg centering at downstream of meander (Glide)	22	22			100%			
		•	•				•			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	12			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	12			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	12	12			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	12	12			100%			

Visual Stream Morphology Stability Assessment UT3 Table 5E Reach ID Assessed Length 1084

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	38	38			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	37	37			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	37	37			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	37	37			100%			
		2. Thalweg centering at downstream of meander (Glide)	37	37			100%			
	•	•						•		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	23	23			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	23	23			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	23	23			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	23	23			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	23	23			100%			

Table 6 Vegetation Condition Assessment

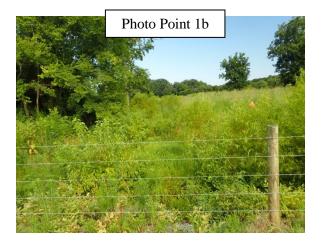
Disente di Aseas - --- 1

Abbey Lamm

Planted Acreage	16.4					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
Cumulative Tota						0.0%

Easement Acreage ²	17.3					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

= Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.


2 = The acreage within the easement boundaries.

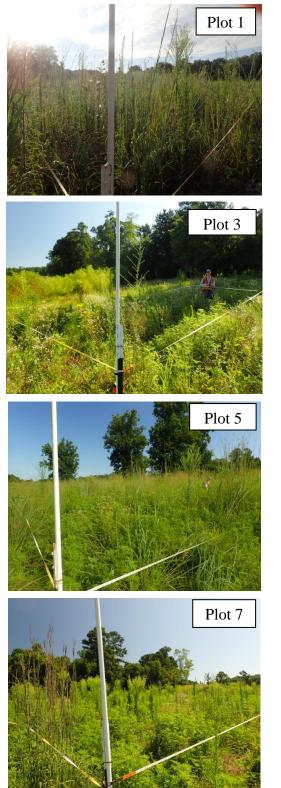
3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

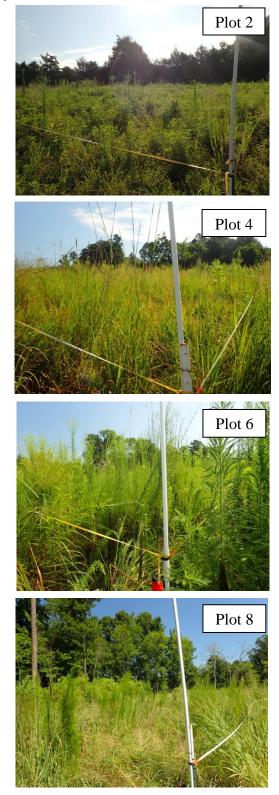
4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have vet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particulalry for situations where the conditon for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are limited or in the narrative section of the executive summary.

Abbey Lamm Year 1 Fixed Station Photographs Taken July/October 2017

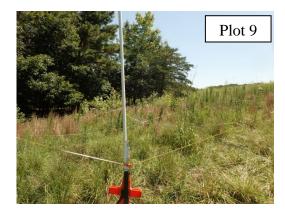
2017 Year 3 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC

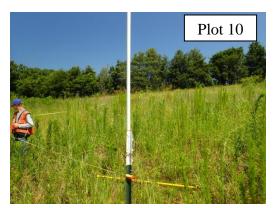
Abbey Lamm Year 1 Fixed Station Photographs (continued) Taken July/October 2017





Abbey Lamm Year 3 Vegetation Monitoring Photographs Taken July 2017




2017 Year 3 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Appendices Restoration Systems, LLC

Abbey Lamm Year 3 Vegetation Monitoring Photographs Taken July 2017 (continued)

2017 Year 3 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC

APPENDIX C

VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
Tables 10a-b. Supplemental Vegetation Transect Data
Remedial Planting Plan Figure
2016 Replant Photos

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	No	
7	No	
8	Yes	64%
9	Yes	
10	Yes	
11	Yes	
12	No	
13	No	
14	No	

 Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

Table 8. CVS Vegetation Plot													
Report Prepared By	Corri Faquin												
Date Prepared	7/24/2017 11:24												
database name	RS-Lamm-2017-A-v2.3.1.mdb												
database location	S:\Business\Projects\14\14-005 Abby Lamm Detailed\2017 Year 3 Monitoring\cvs												
computer name	PHILLIP-PC												
file size	56627200												
DESCRIPTION OF WORKSHE	EETS IN THIS DOCUMENT												
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.												
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.												
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all												
Proj, total stems	natural/volunteer stems. List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).												
Plots													
Vigor	Frequency distribution of vigor classes for stems for all plots.												
Vigor by Spp	Frequency distribution of vigor classes listed by species.												
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.												
Damage by Spp	Damage values tallied by type for each species.												
Damage by Plot	Damage values tallied by type for each plot.												
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.												
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead												
ALL Stems by Plot and spp	and missing stems are excluded.												
PROJECT SUMMARY													
Project Code	14-005												
project Name	Lamm												
Description													
River Basin	Cape Fear												
length(ft)													
stream-to-edge width (ft)													
area (sq m)													
Required Plots (calculated)													
Sampled Plots	14												

Table 8. CVS Vegetation Plot Metadata

Table 9. Planted and Total Stems Project Code 14.005. Project Name: Lamm

														(Current Plo	ot Da	Current Plot Data (MY3 2017)														
			14.005-AXE-0001 14.005-AXE-0002				2	14.005-AXE-0003			14.005-AXE-0004			5-AXE-000	14.005-AXE	14.005-AXE-0007			14.005-AXE-0008			14.00	-AXE-0009) 14.	14.005-AXE-0010						
Scientific Name	Common Name	Species Type	PnoLS	PnoLS P-all T		PnoLS P-all T		Ρ	PnoLS P-all T		Pnol	PnoLS P-all T		PnoLS P-all T		I	PnoLS P-all T		PnoLS P-all T		т	PnoLS P-all T					PnoL	PnoLS P-all T			
Acer rubrum	red maple	Tree																						1							
Betula nigra	river birch	Tree	3	3	3				1	1	1	1	1	1			1 1	L 1	L			2	2	2	1	1	1				
Carpinus caroliniana	American hornbeam	Tree												2	2	2															
Carya	hickory	Tree																													
Celtis	hackberry	Tree																													
Celtis laevigata	sugarberry	Tree																													
Cephalanthus occidentalis	common buttonbush	Shrub																													
Cornus amomum	silky dogwood	Shrub				1	1	1	3	3	3			1	1	1						7	7	' 7				2	2 2		
Diospyros	diospyros	Tree																													
Diospyros virginiana	common persimmon	Tree						1			1	1	1	1			1											1	1 1		
Fraxinus pennsylvanica	green ash	Tree				5	5	11	6	6	9			2	2	10					11	6	6	9			5	4	4 4		
Juglans	walnut	Tree												1	1	1					2										
Juglans nigra	black walnut	Tree						1																							
Liquidambar	sweetgum	Tree																									4				
Liquidambar styraciflua	sweetgum	Tree																													
Liriodendron tulipifera	tuliptree	Tree				4	4	4																	1	1	1				
Nyssa	tupelo	Tree	2	2	2	3	3	3	1	1	1						1 1	L 1	L												
Nyssa aquatica	water tupelo	Tree																													
Nyssa sylvatica	blackgum	Tree										1	1	1 1	1	1															
Pinus taeda	loblolly pine	Tree																						5			3				
Platanus occidentalis	American sycamore	Tree	2	2	2				1	1	1	3	3	3			1 1	L 1	L 2	2	2				1	1	1				
Quercus	oak	Tree																													
Quercus alba	white oak	Tree										1	1	1 1	1	1			1	1	1				1	1	1	1	1 1		
Quercus nigra	water oak	Tree										1	1	1					1	1	1				2	2	2				
Quercus phellos	willow oak	Tree	2	2	2							1	1	1					2	2	2				2	2	2				
Quercus rubra	northern red oak	Tree															2 2	2 2	2 1	1	1										
Ulmus americana	American elm	Tree																						3							
Unknown		Shrub or Tree																													
		Stem count	: 9	9	9	13	13	21	12 1	2 1	.6	9	9	98	8	16	5 5	5 5	5 7	7	20	15	15	27	8	8	20	8 8	8 8		
		size (ares)		1			1		1			1			1		1			1			1			1		1			
	size (ACRE Species cou			0.02		0.02			0.02			0.02		0.02			0.02		0.02			0.02			0.02			0.02			
				4	4	4	4	6		5	6	7	7	7 6	6	6	4 4	1 4	l 5	5	7	3	E	•	6	6	9	4	4 4		
		Stems per ACRE	364.2	364.2	364.2	526.1 5	26.1 849	9.8 4	485.6 485.	6 647	5 364	.2 364.	2 364.	2 323.7	323.7 64	17.5	202.3 202.3	3 202.3	283.3	283.3	809.4	607	607	1093	323.7	323.7 809	.4 323.	7 323.	7 323.7		

Color for Density

Exceeds requirements by 10%

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

PnoLS = Planted excluding livestakes

Table 9. Planted and Total Stems (continued)Project Code 14.005. Project Name: Lamm

							Curren	t Plot D	ata (MY	3 2017)								Annua	l Means			
			14.0	05-AXE	-0011	14.0	05-AXE	-0012	14.0	05-AXE-	0013	14.005-AXE	-0014	М	Y3 (201	.7)	N	1 Y2 (20 1	16)	М	Y1 (201	15)	Г
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	Pr
Acer rubrum	red maple	Tree														1							
Betula nigra	river birch	Tree										1 1	1	10	10	10	6	6	6	9	9	9	1
Carpinus caroliniana	American hornbeam	Tree												2	2	2	1	1	1				
Carya	hickory	Tree																	3			1	
Celtis	hackberry	Tree			1											1							
Celtis laevigata	sugarberry	Tree																		1	1	1	
Cephalanthus occidentalis	common buttonbush	Shrub																		5	5	5	
Cornus amomum	silky dogwood	Shrub	3	1	3 3				2	2	2			19	19	19	25	25	25	26	26	26	
Diospyros	diospyros	Tree																		2	2	2	
Diospyros virginiana	common persimmon	Tree	1	1	1 1									3	3	5	7	7	7	14	14	14	
Fraxinus pennsylvanica	green ash	Tree	3	3	3 3									26	26	62	27	27	41	21	21	21	
Juglans	walnut	Tree												1	1	3							
Juglans nigra	black walnut	Tree			1											2			1			1	
Liquidambar	sweetgum	Tree							1							4							T
Liquidambar styraciflua	sweetgum	Tree							1										5				T
Liriodendron tulipifera	tuliptree	Tree	1	1	1	1	1	. 1	3	3	3			10	10	10	12	12	12	27	27	27	
Nyssa	tupelo	Tree				1	1	. 1	L					8	8	8	10	10	10	13	13	13	
Nyssa aquatica	water tupelo	Tree																					
Nyssa sylvatica	blackgum	Tree												2	2	2							
Pinus taeda	loblolly pine	Tree														8			1				
Platanus occidentalis	American sycamore	Tree										1 1	1	11	11	11	2	2	2	2	2	2	
Quercus	oak	Tree															2	2	2	11	11	11	
Quercus alba	white oak	Tree				2	2	2	2 2	2	2			9	9	9	8	8	8	10	10	10	
Quercus nigra	water oak	Tree										1 1	1	5	5	5							Γ
Quercus phellos	willow oak	Tree												7	7	7	1	1	1				
Quercus rubra	northern red oak	Tree										3 3	3	6	6	6	1	1	1	4	4	4	
Ulmus americana	American elm	Tree														3							Γ
Unknown		Shrub or Tree																		3	3	3	
		Stem count	8	8	3 10	4	4	. 4	l 7	7	7	6 6	6	119	119	178	102	102	126	148	148	150	
		size (ares)		1			1			1		1			14			14			14		
		size (ACRES)		0.02			0.02			0.02		0.02			0.35			0.35			0.35		Γ
		Species count		4	1 6	3	3	3	3 3	3	3	4 4	4	14	14	20	12	12	16	14	14	16	
		Stems per ACRE	323.7	323.7	404.7	161.9	161.9	161.9	283.3	283.3	283.3	242.8 242.8	242.8	344	344	514.5	294.8	294.8	364.2	427.8	427.8	433.6	5

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

М	YO (201	.5)
PnoLS	P-all	Т
14	14	14
5	5	5
7	7	7
7 7 28	7 7	7
28	28	28
20	20	20
24	24	24
44	44	44
9 1	9 1	9 1
1	1	1
1	1	1
27	27	27
3	3	3
6	6	6
9	9	9
205	205	205
	14	
	0.35	
15	15	15
592.6	592.6	592.6

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m	Temporary Plot 4 2m x 50m	Temporary Plot 5 2m x 50m
Betula nigra	River birch	Tree		3		1	
Cornus amomum	Silky dogwood	Tree			1		2
Fraxinus pennsylvanica	Green ash	Tree				2	5
Liriodendron tulipifera	Tulip poplar	Tree	1	2	11		2
<i>Nyssa</i> sp.	Gum	Tree		2		2	1
Platanus occidentalis	Sycamore	Tree	1	4		2	
Quercus falcata	Southern red oak	Tree				1	
Quercus nigra	Water oak	Tree	1				
Quercus phellos	Willow oak	Tree	4	4		2	
Quercus rubra	Northern red oak	Tree	2	2	5	1	1
Ulmus americana	American elm	Tree	1		2		
		Stem Count	10	17	19	11	11
		Size (Ares)	1	1	1	1	1
		Size (Acres)	0.0247	0.0247	0.0247	0.0247	0.0247
		Species count	6	6	4	7	5
		Stems per acre	404.9	688.3	769.2	445.3	445.3

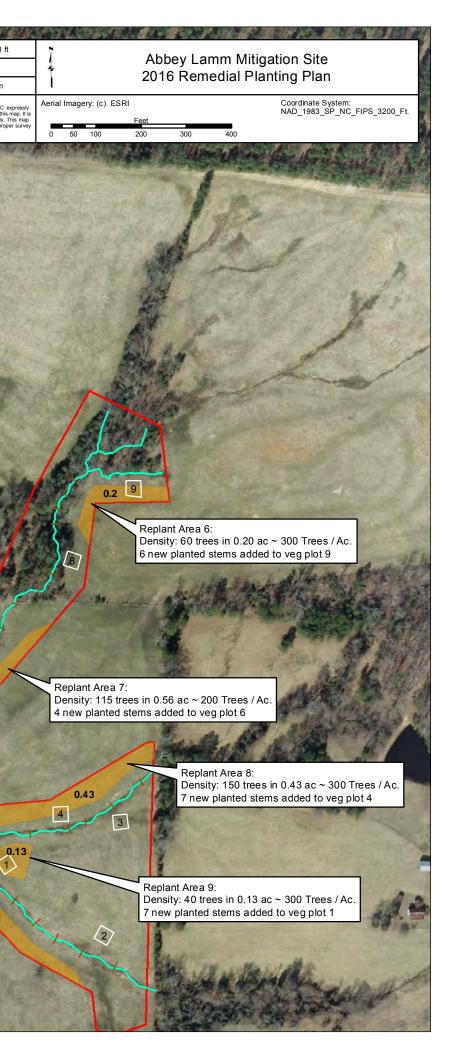
Table 10a. Supplemental Vegetation Transect Data – April 2017

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m	Temporary Plot 4 2m x 50m	Temporary Plot 5 2m x 50m	Temporary Plot 6 2m x 50m	Temporary Plot 7 2m x 50m	Temporary Plot 8 2m x 50m	Temporary Plot 9 2m x 50m	Temporary Plot 10 2m x 50m
Betula nigra	River birch	Tree		3		1		2			1	3
Cornus amomum	Silky dogwood	Tree			1		2	1			1	
Fraxinus pennsylvanica	Green ash	Tree	2			3	5		3	52	1	
Liriodendron tulipifera	Tulip poplar	Tree	1	2	11		2		2		1	3
<i>Nyssa</i> sp.	Gum	Tree		2		1	1	1	2			5
Platanus occidentalis	Sycamore	Tree	1	4		2		1	3	3	3	3
Quercus sp.	Oak	Tree						1	1	2		1
Quercus alba	White oak	Tree									2	3
Quercus falcata	Southern red oak	Tree				1						
Quercus nigra	Water oak	Tree	1	1				3	1	1		
Quercus phellos	Willow oak	Tree	4	4		2		2	2	4	1	1
Quercus rubra	Northern red oak	Tree	2	1	5	1	1	2		2		2
Ulmus americana	American elm	Tree	1		2			1				
<i>Carya</i> sp.	Hickory	Tree					1					
	Ste	em Count	12	19	19	11	12	14	14	64	10	21
	Si	ze (Ares)	1	1	1	1	1	1	1	1	1	1
	Siz	e (Acres)	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247
	Spec	eies count	7	7	4	7	6	9	7	6	7	8
	Stem	s per acre	485.8	769.2	769.2	445.3	485.8	566.8	566.8	2591.1	404.9	850.2

Table 10b. Supplemental Vegetation Transect Data – October 2017

Replant Area 3: Density: 30 trees in 0.21 ac ~ 140 Trees / Ac. 3 new planted stems added to veg plot 13

> Replant Area 5: Density: 190 trees in 0.62 ac ~ 300 Trees / Ac. 7 new planted stems added to veg plot 7


> > 0.62

0.56

7

Replant Area 4: Density: 25 trees in 0.15 ac ~ 160 Trees / Ac.

> Replant Area 10: Density: 150 trees in 0.42 ac ~ 350 Trees / Ac.

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA FULL DELIVERY CONTRACT NO. 5790

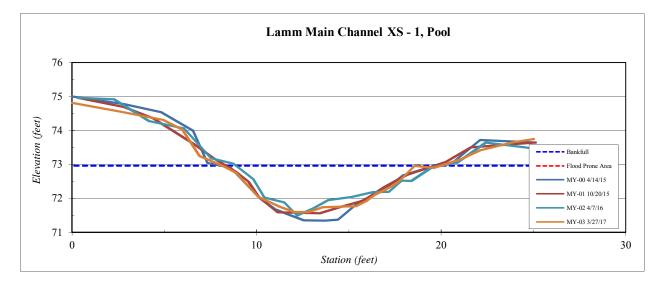
Photographs taken January 13th, 2017

Abbey Lamm– Remedial Action Plan for Vegetation - Update

APPENDIX D

STREAM SURVEY DATA

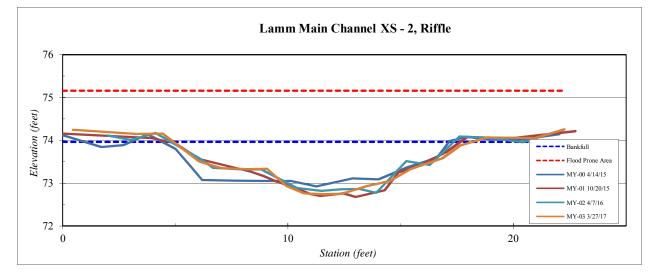
Cross-section Plots Substrate Plots Tables 11a-e. Baseline Stream Data Summary Tables 12a-l. Monitoring Data


2017 Year 3 Monitoring Report (Contract No. 5790)

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 1, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation	
-0.8	74.7	ĺ
-0.5	74.9	
2.7	74.5	
4.9	74.3	
6.0	74.0	
6.9	73.3	
8.2	72.9	
8.9	72.7	
10.1	72.0	
11.3	71.7	
12.0	71.6	
12.8	71.6	
13.6	71.7	
14.8	71.8	
15.4	71.8	
16.0	71.9	
16.4	72.1 72.3 72.5	
17.2	72.3	
17.7	72.5	
18.6	73.0	
19.6	72.9	
21.1	73.2	
22.1	73.4	
23.9	73.7	
25.0	73.7	

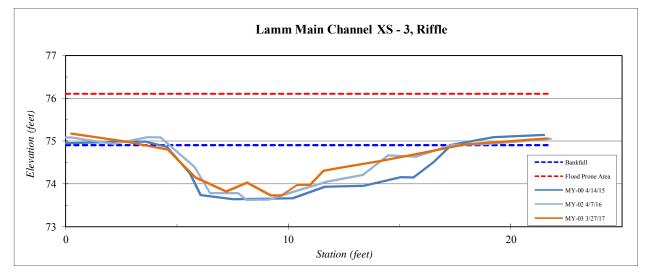
SUMMARY DATA	
Bankfull Elevation:	73.0
Bankfull Cross-Sectional Area:	9.4
	9.4
Bankfull Width:	
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 2, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.5	74.25
3.2	74.15
4.4	74.16
6.0	73.51
7.0	73.35 73.33
8.2	73.33
9.1	73.33
9.9	72.94
10.7	72.76
11.6	72.74
12.3	72.75
12.6	72.78
13.5	72.93
14.5	73.05
15.4	73.33
16.9	73.58
17.7	73.88
18.8	74.06
21.0	74.05
22.3	74.25

SUMMARY DATA	
Bankfull Elevation:	74.0
Bankfull Cross-Sectional Area:	9.5
Bankfull Width:	13.2
Flood Prone Area Elevation:	75.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.3
Entrenchment Ratio:	6.8
Bank Height Ratio:	1.09


No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

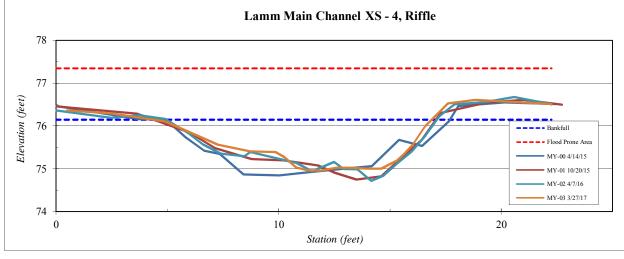
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 3, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.3	75.18
2.6	75.00
4.6	74.80
5.0	74.58
5.8	74.15
6.4	74.01
7.2	73.83
8.1	74.03
9.2	73.73
9.7	73.73
10.4	73.98
11.0	73.98
11.6	74.31
12.3	74.38
14.2	74.54
16.3	74.76
17.9	74.92
21.6	75.06

SUMMARY DATA	
Bankfull Elevation:	74.9
Bankfull Cross-Sectional Area:	8.1
Bankfull Width:	14.3
Flood Prone Area Elevation:	76.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	25.2
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.0

Cross section not monitored during year 1 (2015) due to hornets nest at cross section location.

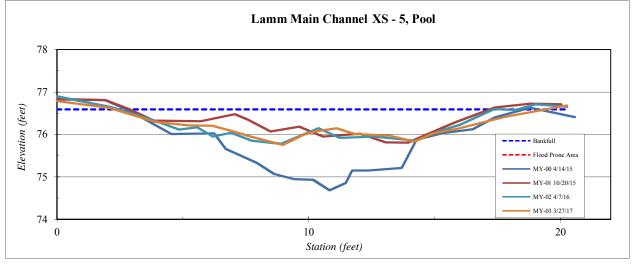
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 4, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith


SU	l	Elevation	Station
Ba		76.36	0.5
Ba		76.30	2.5
Ba		76.11	4.9
Fl		75.56	7.3
Fl		75.41	8.7
Μ		75.39	9.9
Μ		75.27	10.3
W		75.03	10.8
Eı		74.97	11.3
B		74.96	11.9
		75.02	12.6
		75.02	13.2
		75.00	14.0
		75.00	14.6
		75.19	15.3
		75.35	15.6
		75.56	16.0
		75.99	16.6
		76.53	17.6
		76.61	18.8
		76.5	22.2
et)			
tion (feet)			
tion			

SUMMARY DATA	
Bankfull Elevation:	76.2
Bankfull Cross-Sectional Area:	9.4
Bankfull Width:	12.6
Flood Prone Area Elevation:	77.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	16.9
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.0

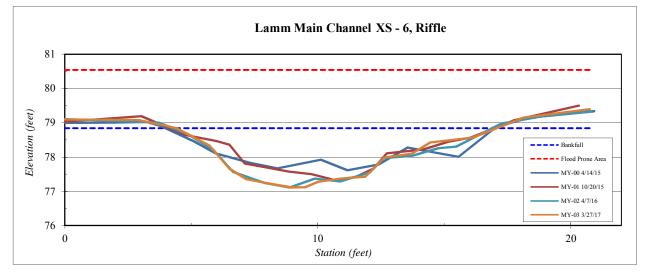
C/E

Stream Type


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 5, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	76.8
2.1	76.6
3.9	76.3
5.2	76.2
6.2	76.2
7.0	76.1
7.7	75.9
9.0	75.8
9.8	76.0
10.3	76.1
11.1	76.1
11.8	76.0
13.2	76.0
14.2	75.8
14.9	76.0
15.9	76.1
17.8	76.4
20.3	76.7

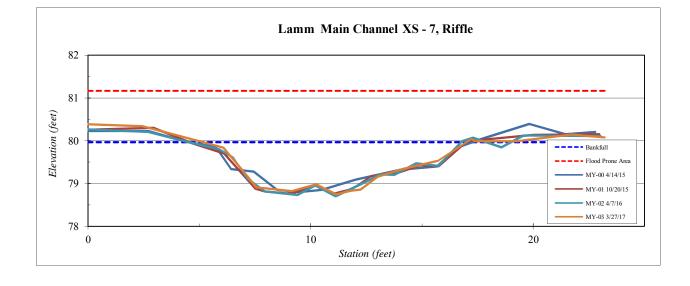
SUMMARY DATA	
Bankfull Elevation:	76.6
Bankfull Cross-Sectional Area:	7.6
Bankfull Width:	17.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


Sediment deposition in pool appears natural and is not expected to lead to instability.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 6, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	79.10
2.9	79.08
4.4	78.84
5.7	78.33
6.5	77.67
7.2	77.35
7.8	77.27
8.9	77.11
9.5	77.12
10.0	77.28
10.9	77.37
11.9	77.43
12.6	77.99
13.7	78.10
14.5	78.43
16.1	78.57
18.2	79.15
20.8	79.40
	1

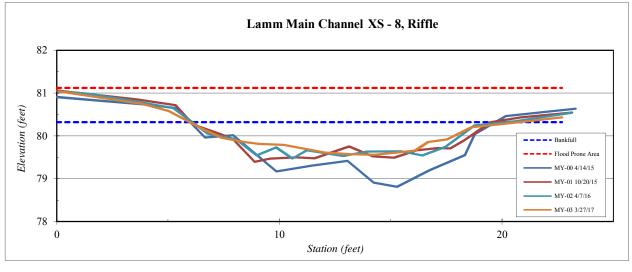
SUMMARY DATA	
Bankfull Elevation:	78.8
Bankfull Cross-Sectional Area:	12.1
Bankfull Width:	12.7
Flood Prone Area Elevation:	80.5
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	1.0
W / D Ratio:	13.3
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.31


Channel constructed in lake bed, with stabilization occurring in years 1, 2, and 3 monitoring. No problems visible in this reach.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 7, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	80.39
2.4	80.34
4.1	80.11
6.1	79.84
6.9	79.31
7.6	78.91
9.1	78.82
10.2	78.98
11.2	78.75
11.8	78.83
12.2	78.86
13.0	79.16
14.2	79.35
15.7	79.53
17.2	80.04
17.4	79.99
19.3	79.99
21.7	80.14
23.2	80.08

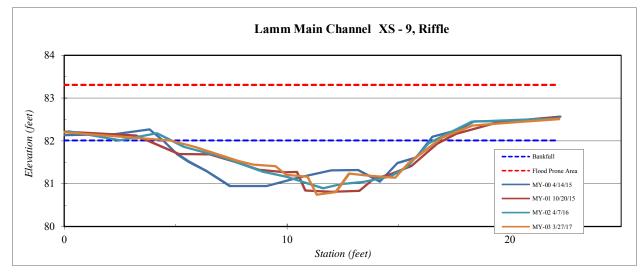
SUMMARY DATA	
Bankfull Elevation:	80.0
Bankfull Cross-Sectional Area:	8.8
Bankfull Width:	11.9
Flood Prone Area Elevation:	81.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	16.1
Entrenchment Ratio:	7.6
Bank Height Ratio:	1.0



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 8, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation	
0.1	81.04	
3.8	80.75	
5.0	80.59	
6.5	80.17	
7.4	79.95	
8.4	79.86	
9.1	79.81	
10.2	79.79	
12.0	79.61	
13.2	79.57	
14.3	79.56	
16.1	79.65	
16.7	79.86	
17.5	79.92	
18.6	80.20	
20.9	80.33	
22.7	80.44	
		l

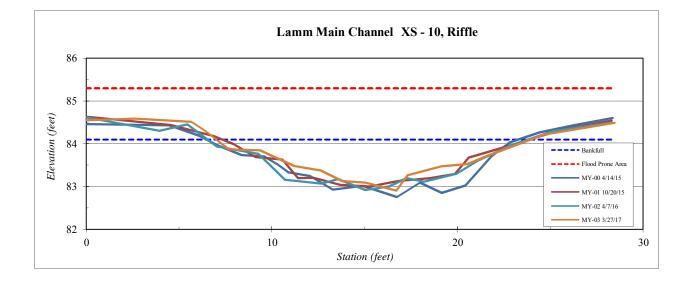
SUMMARY DATA	
Bankfull Elevation:	80.3
Bankfull Cross-Sectional Area:	6.8
Bankfull Width:	14.7
Flood Prone Area Elevation:	81.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	31.8
Entrenchment Ratio:	6.1
Bank Height Ratio:	1.0


Sediment transport appears to be natural and has stabilized during years 1 to 3 monitoring. No problems appears to be occurring in this reach.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 9, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	82.20
4.8	82.01
5.9	81.86
6.8	81.70
7.8	81.53
8.5	81.45
9.5	81.41
10.0	81.21
10.9	81.16
11.3	80.74
12.2	80.80
12.8	81.24
13.6	81.19
14.9	81.14
15.4	81.46
17.0	82.08
18.3	82.36
20.0	82.42
22.2	82.51

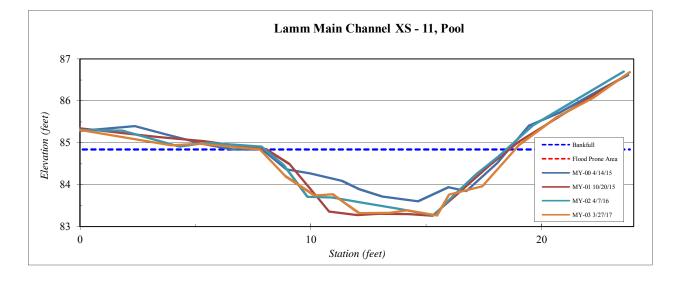
SUMMARY DATA	
Bankfull Elevation:	82.0
Bankfull Cross-Sectional Area:	7.3
Bankfull Width:	12.1
Flood Prone Area Elevation:	83.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	20.1
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.08


No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 10, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

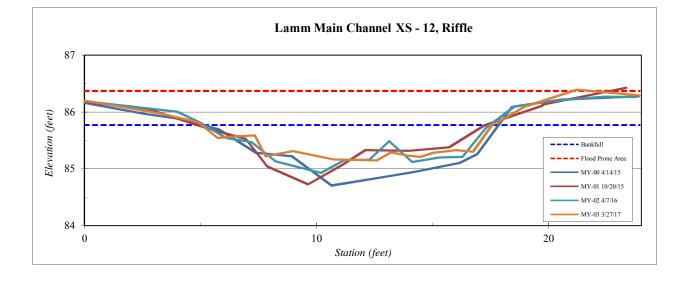
Station	Elevation
0.0	84.55
2.6	84.58
5.7	84.51
6.4	84.31
7.7	83.87
9.4	83.85
11.2	83.48
12.6	83.38
13.8	83.13
15.0	83.09
16.7	82.90
17.3	83.26
19.1	83.47
20.5	83.53
21.8	83.74
24.6	84.21
28.5	84.49

SUMMARY DATA	
Bankfull Elevation:	84.1
Bankfull Cross-Sectional Area:	10.1
Bankfull Width:	16.9
Flood Prone Area Elevation:	85.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	28.3
Entrenchment Ratio:	5.3
Bank Height Ratio:	1.0


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 11, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.3	85.3
4.0	84.9
5.2	85.0
7.8	84.8
8.9	84.2
10.2	83.7
11.0	83.8
11.5	83.6
12.1	83.3
13.4	83.3
14.2	83.4
15.5	83.3
16.0	83.8
17.4	84.0
19.0	84.9
20.7	85.6
22.3	86.1
23.8	86.7

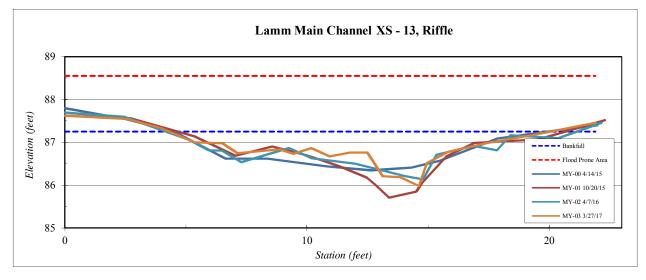
SUMMARY DATA	
Bankfull Elevation:	84.8
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	11.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 12, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	86.20
3.4	85.97
4.9	85.82
5.7	85.54
6.5	85.57
7.3	85.59
7.8	85.22
9.0	85.31
10.7	85.17
12.6	85.15
13.2	85.29
13.9	85.23
14.5	85.21
15.1	85.28
16.0	85.33
16.7	85.30
17.6	85.77
19.0	86.10
21.2	86.39
23.9	86.29

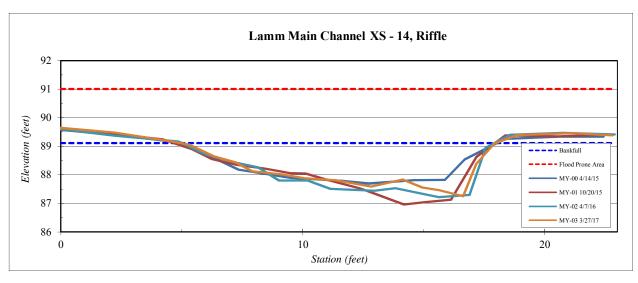
SUMMARY DATA	
Bankfull Elevation:	85.8
Bankfull Cross-Sectional Area:	5.5
Bankfull Width:	12.5
Flood Prone Area Elevation:	86.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	28.4
Entrenchment Ratio:	7.2
Bank Height Ratio:	1.0



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 13, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	87.62
2.6	87.55
4.0	87.34
5.4	87.00
6.5	86.97
7.1	86.74
8.9	86.83
9.4	86.73
10.2	86.86
10.9	86.67
11.8	86.76
12.5	86.76
13.1	86.21
13.9	86.19
14.6	85.98
14.9	86.52
15.8	86.77
17.5	86.98
19.4	87.17
21.9	87.45

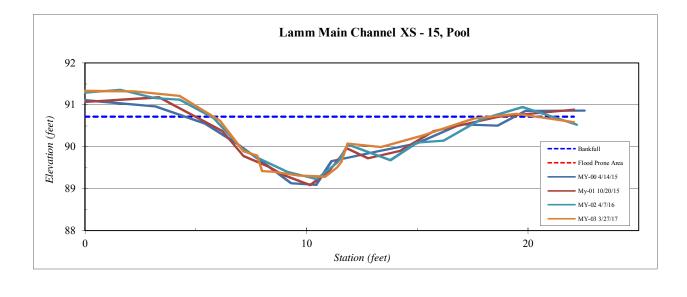
SUMMARY DATA	
Bankfull Elevation:	87.3
Bankfull Cross-Sectional Area:	7.2
Bankfull Width:	15.8
Flood Prone Area Elevation:	88.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.5
W / D Ratio:	34.7
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0


Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel. Depth is decreasing since MY-01 and is stabilizing in MY-02 and MY-03.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 14, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
-0.2	89.66
2.2	89.48
4.3	89.22
5.3 6.3	89.06
6.3	88.66
7.2	88.44
7.9	88.13
9.1	88.01
10.1	87.88
11.3	87.82
12.8	87.58
14.1	87.83
14.9	87.55
15.6	87.46
16.6	87.25
17.2	88.39
17.9	89.10
18.9	89.39
21.1	89.46
22.8	89.38

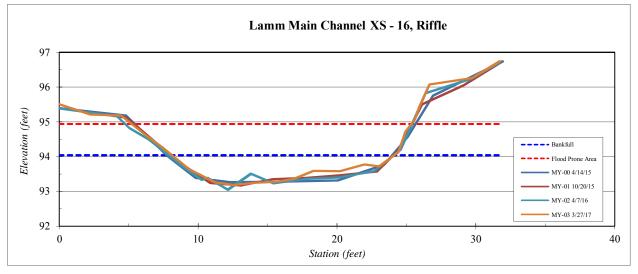
SUMMARY DATA	
Bankfull Elevation:	89.1
Bankfull Cross-Sectional Area:	14.2
Bankfull Width:	13.0
Flood Prone Area Elevation:	91.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.9
Mean Depth at Bankfull:	1.1
W / D Ratio:	11.9
Entrenchment Ratio:	6.9
Bank Height Ratio:	1.0


Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel. Depth is decreasing since MY-01 and is stabilizing in MY-02 and MY-03.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 15, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	91.3
2.2	91.3
4.3	91.2
6.1	90.6
7.2	89.9
7.8	89.8
8.0	89.4
8.5	89.4
9.6	89.3
10.8	89.3
11.4	89.5
11.6	89.6
11.8	90.1
13.4	90.0
15.2	90.3
17.6	90.7
19.5	90.8
22.1	90.6

SUMMARY DATA	
Bankfull Elevation:	90.7
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	12.6
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

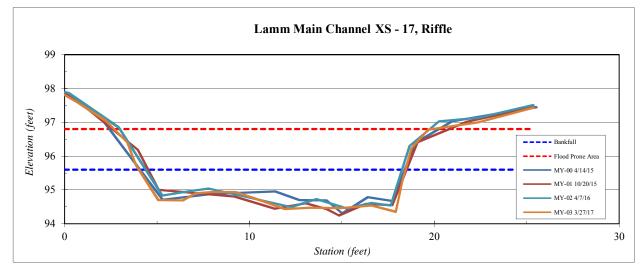


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 16, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	95.51
2.3	95.21
4.4	95.18
6.3	94.58
7.4	94.26
8.7	93.85
9.4	93.64
11.2	93.26
12.6	93.18
14.2	93.25
15.6	93.28
16.9	93.36
18.3	93.59
20.2	93.58
20.9	93.65
22.0	93.78
23.0	93.72
24.4	94.13
24.9	94.73
25.6	95.07
26.0	95.5
26.7	96.1
29.7	96.3
31.7	96.7

SUMMARY DATA	
Bankfull Elevation:	94.0
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	16.0
Flood Prone Area Elevation:	94.9
Flood Prone Width:	20.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	29.8
Entrenchment Ratio:	1.3
Bank Height Ratio:	2.2

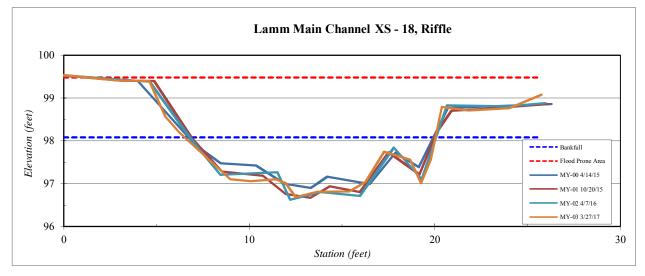
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 17, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith


Station	Elevation
-3.0	98.30
-0.9	98.08
0.6	97.62
2.2	97.03
3.4	96.41
3.9	95.73
4.4	95.24
5.1	94.70
6.4	94.69
7.1	94.90
7.9	94.94
9.2	94.94
10.4	94.73
11.9	94.43
13.3	94.47
15.0	94.47
16.6	94.54
17.9	94.36
18.3	95.29
18.8	96.24
19.7	96.8
22.4	97.0
25.4	97.4

SUMMARY DATA	
Bankfull Elevation:	95.6
Bankfull Cross-Sectional Area:	13.2
Bankfull Width:	13.9
Flood Prone Area Elevation:	96.8
Flood Prone Width:	19.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.9
W / D Ratio:	14.6
Entrenchment Ratio:	1.4
Bank Height Ratio:	1.7

C/E

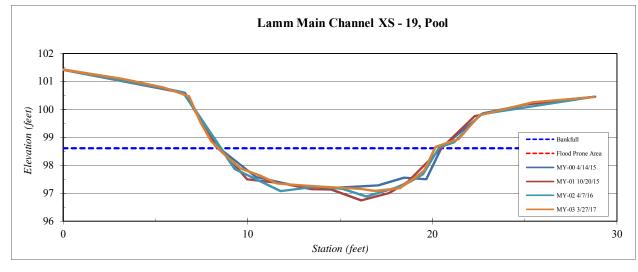
Stream Type


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 18, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	99.53
2.8	99.41
4.6	99.40
4.8	99.16
5.5	98.57
6.2	98.20
9.0	97.10
10.1	97.06
11.4	97.11
12.0	97.02
12.5	96.69
13.7	96.81
15.4	96.82
16.3	97.04
17.3	97.75
18.7	97.56
19.3	97.01
19.8	97.57
20.4	98.80
21.8	98.71
24.0	98.8
25.7	99.1

SUMMARY DATA	
Bankfull Elevation:	98.1
Bankfull Cross-Sectional Area:	11.8
Bankfull Width:	13.5
Flood Prone Area Elevation:	99.5
Flood Prone Width:	31.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	15.4
Entrenchment Ratio:	2.3
Bank Height Ratio:	1.5

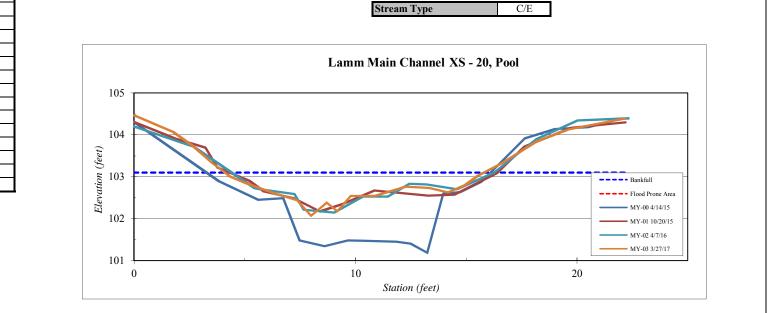
P	
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 19, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith


Station	Elevation
0.0	101.4
3.2	101.1
5.4	100.8
6.8	100.5
7.4	99.5
8.0	98.9
8.7	98.4
9.6	97.9
10.7	97.6
11.6	97.4
12.7	97.3
13.7	97.2
14.9	97.2
16.1	97.2
16.9	97.1
18.2	97.2
19.0	97.5
19.6	97.8
20.2	98.7
21.4	98.9
22.5	99.8
25.5	100.3
28.8	100.4

SUMMARY DATA	
Bankfull Elevation:	98.6
Bankfull Cross-Sectional Area:	13.4
Bankfull Width:	11.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	1.1
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.8

C/E

Stream Type



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 20, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	104.5
1.8	104.1
2.7	103.7
3.5	103.3
4.3	103.0
5.0	102.8
6.4	102.6
7.4	102.4
8.0	102.1
8.7	102.4
9.2	102.2
9.8	102.5
10.9	102.5
12.3	102.8
13.3	102.7
14.2	102.6
14.9	102.8
15.5	103.0
16.6	103.3
18.2	103.8
19.6	104.1
22.2	104.4

SUMMARY DATA	
Bankfull Elevation:	103.1
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	11.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

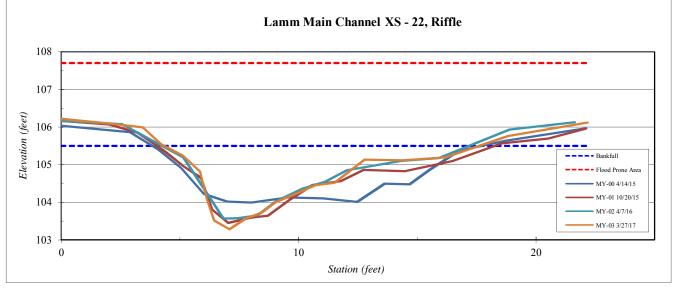
Sediment has aggraded behind a bedrock sill. Sediment has been stable MY-01 through MY-03.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 21, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	105.32
2.6	105.04
4.4	104.96
5.7	104.58
7.0	104.46
8.3	104.40
9.6	104.05
10.8	103.59
11.5	103.56
12.1	103.19
12.8	103.62
13.3	103.40
13.6	103.53
14.5	103.82
15.7	103.80
16.3	104.08
16.8	104.36
17.3	104.55
19.4	105.00
21.7	105.14

SUMMARY DATA	
Bankfull Elevation:	104.7
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	13.0
Flood Prone Area Elevation:	106.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.6
Entrenchment Ratio:	6.9
Bank Height Ratio:	1.14

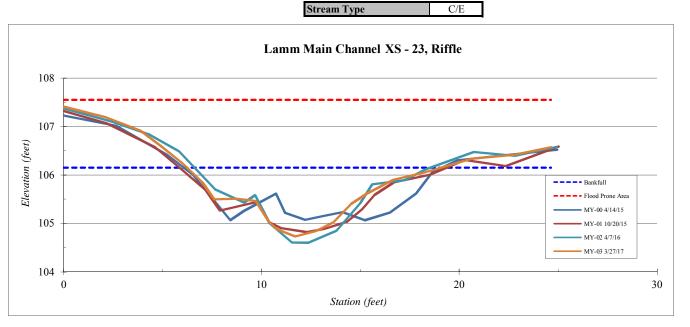
No problems have been noted in this reach. Elevated BHR results from shallow channel depth.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 22, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

106.22 106.09 105.99 105.54 105.24 104.82 104.10 103.51	
105.99 105.54 105.24 104.82 104.10 103.51	
105.54 105.24 104.82 104.10 103.51	
105.24 104.82 104.10 103.51	
104.82 104.10 103.51	
104.10 103.51	
103.51	
103.28	
103.56	
103.73	
104.01	
104.21	
104.45	
104.52	
105.13	
105.12	
105.19	
105.76	
106.12	
	103.56 103.73 104.01 104.21 104.45 104.52 105.13 105.12 105.76

SUMMARY DATA	
Bankfull Elevation:	105.5
Bankfull Cross-Sectional Area:	11.5
Bankfull Width:	13.3
Flood Prone Area Elevation:	107.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	0.9
W / D Ratio:	15.4
Entrenchment Ratio:	6.8
Bank Height Ratio:	1.57

Stream Type C/E

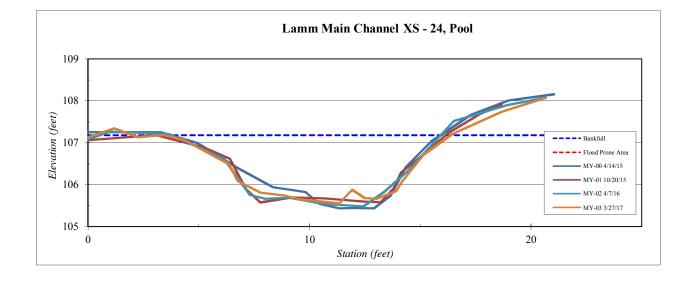

Overall channel area has decreased. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 23, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	107.41
2.1	107.19
3.9	106.92
4.9	106.60
6.0	106.25
7.0	105.84
7.6	105.50
8.7	105.51
9.7	105.47
10.4	105.05
10.8	104.88
11.7	104.73
12.8	104.84
13.6	105.02
14.5	105.40
15.3	105.61
16.7	105.90
18.3	106.05
20.6	106.33
22.8	106.41
24.6	106.6

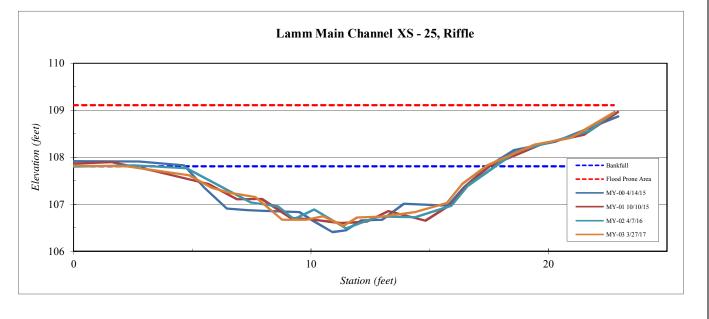
SUMMARY DATA	
Bankfull Elevation:	106.2
Bankfull Cross-Sectional Area:	8.8
Bankfull Width:	12.8
Flood Prone Area Elevation:	107.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.6
Entrenchment Ratio:	7.0
Bank Height Ratio:	1.4

Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 24, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	107.1
1.2	107.3
2.3	107.1
3.4	107.2
4.3	107.1
5.4	106.7
6.4	106.5
6.8	106.1
7.8	105.8
8.9	105.7
9.5	105.7
11.4	105.6
11.9	105.9
12.5	105.7
13.0	105.7
13.9	105.9
14.2	106.1
15.2	106.7
16.4	107.2
18.7	107.7
20.7	108.07

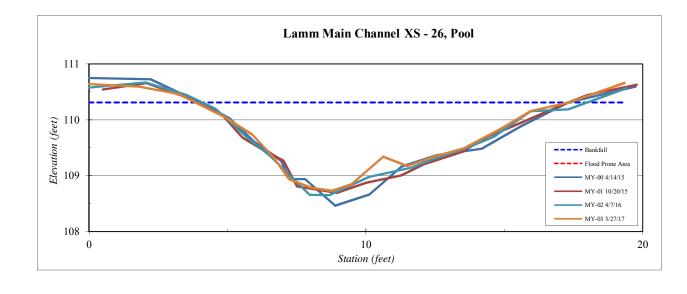
SUMMARY DATA	
Bankfull Elevation:	107.2
Bankfull Cross-Sectional Area:	12.9
Bankfull Width:	12.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 25, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	107.82
2.2	107.81
4.9	107.61
5.8	107.35
6.6	107.24
7.7	107.15
8.8	106.67
9.8	106.67
10.5	106.75
11.4	106.54
11.9	106.72
13.0	106.74
14.4	106.83
15.7	107.03
16.4	107.42
17.5	107.84
19.4	108.27
20.9	108.41
22.8	108.95

SUMMARY DATA	
Bankfull Elevation:	107.8
Bankfull Cross-Sectional Area:	10.6
Bankfull Width:	15.2
Flood Prone Area Elevation:	109.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	21.8
Entrenchment Ratio:	5.9
Bank Height Ratio:	1.0

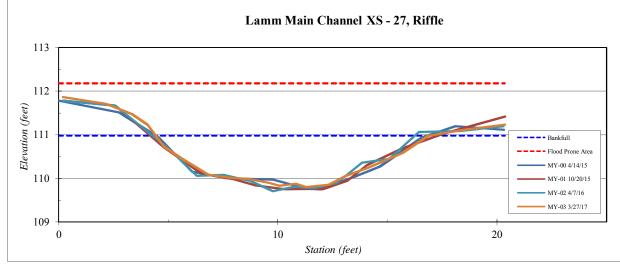
Stream Type C/E



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 26, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	110.6
1.8	110.6
3.2	110.5
4.9	110.0
5.9	109.7
6.7	109.3
7.2	108.9
8.0	108.8
8.8	108.7
9.5	108.8
10.6	109.3
11.5	109.2
12.5	109.3
13.5	109.5
14.9	109.8
16.0	110.2
17.3	110.3
19.3	110.7

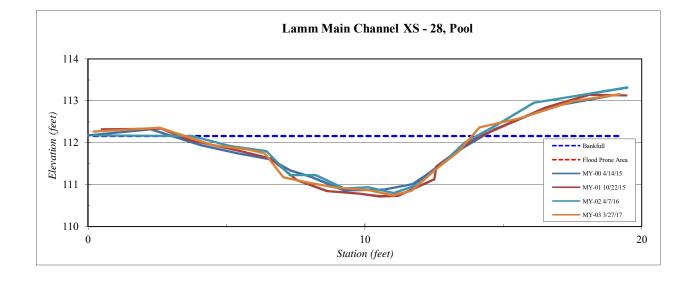
SUMMARY DATA	
Bankfull Elevation:	110.3
Bankfull Cross-Sectional Area:	10.8
Bankfull Width:	13.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 27, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.2	111.86
2.2	111.71
3.3	111.47
4.1	111.23
4.8	110.73
5.6	110.46
6.8	110.08
7.9	110.01
8.6	109.99
9.6	109.89
10.1	109.83
10.8	109.88
11.3	109.80
12.3	109.86
13.1	110.05
14.1	110.25
15.7	110.58
16.9	110.98
18.5	111.11
20.4	111.23

SUMMARY DATA	
Bankfull Elevation:	111.0
Bankfull Cross-Sectional Area:	9.8
Bankfull Width:	12.4
Flood Prone Area Elevation:	112.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.8
W / D Ratio:	15.7
Entrenchment Ratio:	7.3
Bank Height Ratio:	1.0


Sediment has aggraded behind a bedrock sill. Sediment has been stable MY-01 through MY-03.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 28, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.2	112.3
2.6	112.4
4.5	111.9
5.8	111.8
6.4	111.7
7.1	111.2
7.9	111.1
8.9	110.9
10.1	110.9
11.0	110.7
11.7	110.9
12.5	111.3
13.4	111.8
14.1	112.4
15.6	112.6
17.5	113.0
19.2	113.2

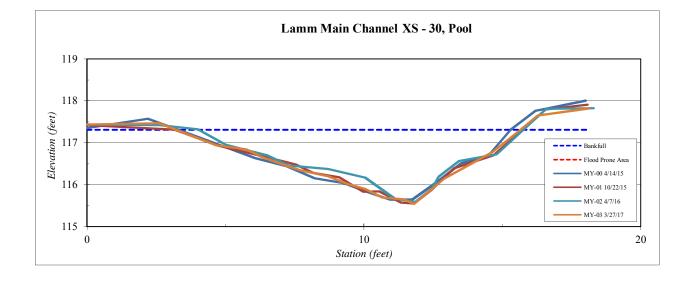
SUMMARY DATA	
Bankfull Elevation:	112.2
Bankfull Cross-Sectional Area:	8.3
Bankfull Width:	10.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 29, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
-1.3	114.73
2.4	114.42
5.8	114.72
6.8	114.19
7.8	113.65
8.6	113.48
9.8	113.64
10.7	113.63
11.6	113.44
12.2	113.26
12.8	113.20
13.6	113.21
14.8	113.42
16.1	113.40
16.5	113.71
17.5	114.30
18.6	114.70
20.6	114.85
23.7	115.16

SUMMARY DATA	
Bankfull Elevation:	114.6
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	12.3
Flood Prone Area Elevation:	116.0
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	13.0
Entrenchment Ratio:	7.3
Bank Height Ratio:	1.0

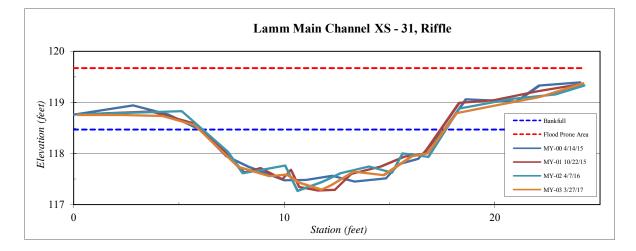
Stream Type C/E



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 30, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	117.4
2.6	117.5
4.7	116.9
5.8	116.8
6.3	116.7
6.9	116.5
7.7	116.3
8.7	116.2
9.4	116.0
10.0	115.9
10.7	115.7
11.5	115.6
11.8	115.5
12.3	115.8
12.9	116.1
14.6	116.8
15.5	117.2
16.3	117.6
18.1	117.8

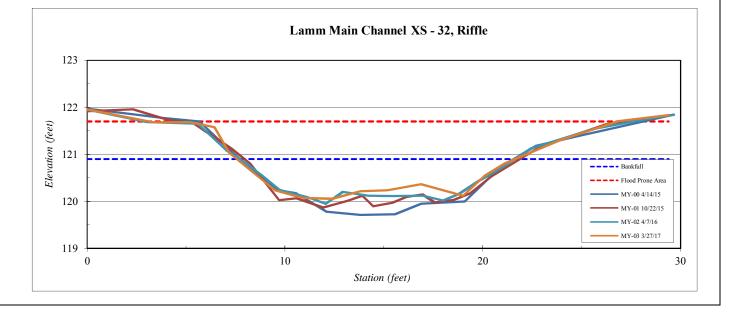
SUMMARY DATA	
Bankfull Elevation:	117.3
Bankfull Cross-Sectional Area:	11.1
Bankfull Width:	12.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 30, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.2	118.75	
2.3	118.75	
4.2	118.74	
5.7	118.56	
6.7	118.20	
7.8	117.74	
9.3	117.56	
10.1	117.59	
10.7	117.43	
11.8	117.29	
12.2	117.38	
13.3	117.65	
14.7	117.58	
16.1	117.95	
16.8	118.00	
18.2	118.79	
19.8	118.93	
22.1	119.11	
24.2	119.37	

SUMMARY DATA	
Bankfull Elevation:	118.5
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	11.7
Flood Prone Area Elevation:	119.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	15.9
Entrenchment Ratio:	7.7
Bank Height Ratio:	1.2

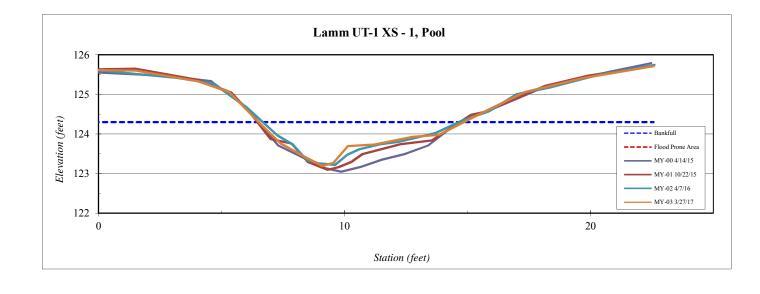
Stream Type C/E


No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 32, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation	
0.0	121.96	
3.4	121.68	
5.2	121.68	
6.4	121.58	
7.2	121.03	
9.5	120.23	
10.9	120.07	
12.4	120.06	
13.8	120.22	
15.2	120.24	
16.9	120.37	
19.0	120.12	
20.1	120.55	
21.1	120.81	
23.9	121.30	
26.9	121.70	
29.4	121.84	
	1	

SUMMARY DATA	
Bankfull Elevation:	120.9
Bankfull Cross-Sectional Area:	8.2
Bankfull Width:	14.1
Flood Prone Area Elevation:	121.7
Flood Prone Width:	25.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	24.2
Entrenchment Ratio:	1.8
Bank Height Ratio:	1.0



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 1, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.5	125.6
1.5	125.6
4.0	125.3
5.3	125.1
6.4	124.3
7.4	123.8
8.4	123.4
9.1	123.2
9.5	123.3
10.1	123.7
11.2	123.7
12.8	123.9
13.8	124.0
15.6	124.5
17.3	125.1
19.7	125.4
22.6	125.7

SUMMARY DATA	
Bankfull Elevation:	124.3
Bankfull Cross-Sectional Area:	4.5
Bankfull Width:	8.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 2, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Elevation

127.98

127.76

127.39 126.88

126.47

126.06 125.65

125.65

125.77

125.87

126.10

126.44

127.03

127.12

127.40

127.43

Station

0.0

3.5

6.0

7.8 8.7

9.9

10.9 11.4

12.5

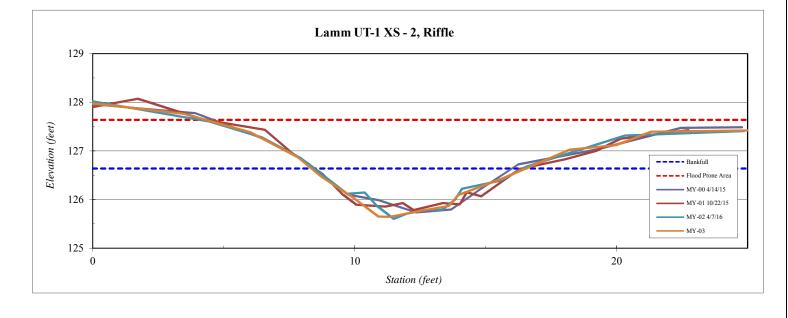
13.6

14.0

15.7

18.2

20.0


21.3

25.1

SUMMARY DATA	
Bankfull Elevation:	126.6
Bankfull Cross-Sectional Area:	4.6
Bankfull Width:	8.2
Flood Prone Area Elevation:	127.6
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	14.6
Entrenchment Ratio:	6.1
Bank Height Ratio:	1.0

Stream Type C/E

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 3, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station 0.0

3.2 5.3

7.0

8.8

10.3

11.2

11.6

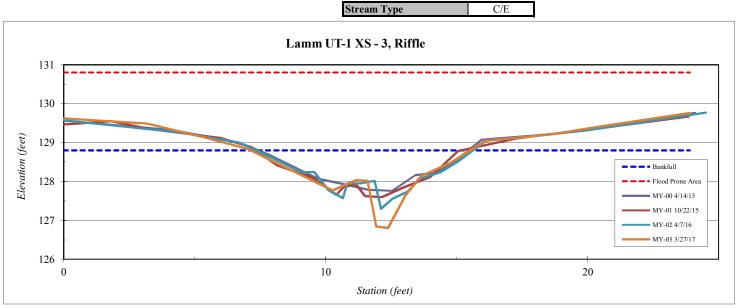
11.9

12.4

13.0 13.7

14.8 16.1

18.6 20.3


23.9

129.40

129.76

		-
Elevation		SUMMARY DATA
129.62		Bankfull Elevation:
129.49		Bankfull Cross-Sectional Area:
129.14		Bankfull Width:
128.84		Flood Prone Area Elevation:
128.26		Flood Prone Width:
127.77		Max Depth at Bankfull:
128.04		Mean Depth at Bankfull:
128.02		W / D Ratio:
126.84		Entrenchment Ratio:
126.80		Bank Height Ratio:
127.62		
128.14		
128.48	Г	
129.05		
129.21		
100.40		

128.8 6.4

8.4 130.8

50.0

2.0

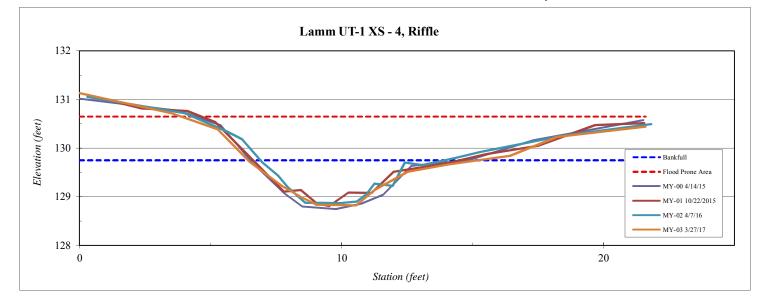
0.8

11.0

6.0

1.67

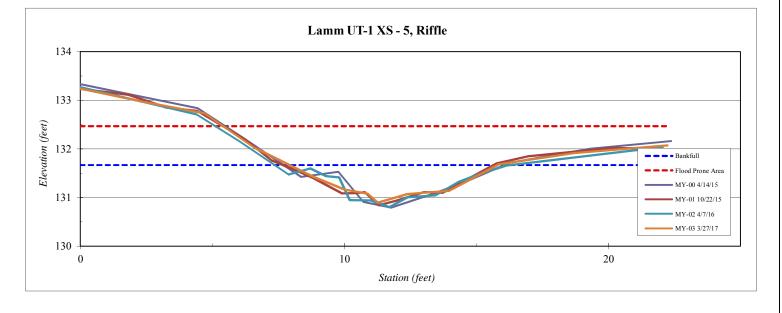
Elevated BHR results from shallow channel depth. UT 1 appears stable throughout.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 4, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Elevation
131.13
130.72
130.38
129.71
129.22
128.99
128.83
128.83
128.82
129.14
129.51
129.66
129.84
130.23
130.44

SUMMARY DATA	
Bankfull Elevation:	129.8
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	8.8
Flood Prone Area Elevation:	130.7
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	18.9
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0

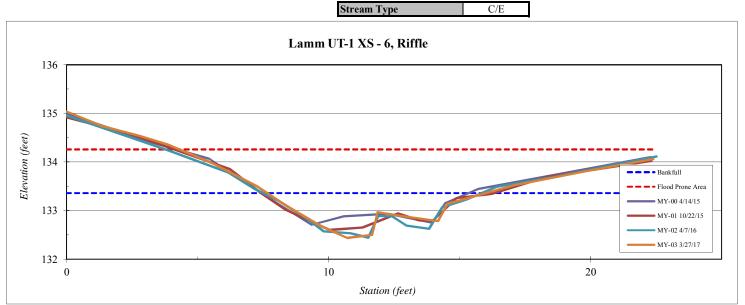
Stream Type


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 5, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation	
-0.2	133.26	
2.3	132.98	
4.7	132.73	
6.6	132.02	
8.8	131.43	
10.0	131.16	
10.9	131.08	
11.3	130.89	
12.4	131.07 131.14	
14.0		
15.8	131.68	
18.7	131.91	
22.2	132.07	
	1	

SUMMARY DATA	
Bankfull Elevation:	131.7
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	7.9
Flood Prone Area Elevation:	132.5
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.8
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.0

Stream Type C/E



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1 XS - 6, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

SU	Elevation	Station
B	135.04	0.0
B	134.74	1.4
B	134.53	2.8
F	134.36	3.9
F	133.96	5.6
Μ	133.50	7.3
Μ	133.10	8.4
W	132.68	9.7
E	132.44	10.7
B	132.50	11.7
	132.97	11.9
	132.89	12.8
	132.79	14.2
	133.14	14.5
	133.52	17.1
	133.81	19.8
	134.06	22.4
5		
fee		
Elevation (feet)		
atio		
leva		
E		

SUMMARY DATA	
Bankfull Elevation:	133.4
Bankfull Cross-Sectional Area:	3.9
Bankfull Width:	8.3
Flood Prone Area Elevation:	134.3
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	17.7
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.29

Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1a XS - 1, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation	
0.0	122.62	
2.9	122.55	
5.2	122.04	
7.2	121.65	
8.5	121.44	
9.5	121.13	
10.3	121.14 121.16	
10.7		
11.0	121.56	
12.4	121.63	
14.2	121.78	
15.6	122.25	
18.1	122.61	
21.3	122.87	
-	-	

SUMMARY DATA	
Bankfull Elevation:	121.8
Bankfull Cross-Sectional Area:	2.1
Bankfull Width:	7.7
Flood Prone Area Elevation:	122.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	28.2
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.2

Stream Type С Lamm UT-1a XS - 1, Riffle 123 Elevation (feet) 155 ----Bankfull Flood Prone Area MY-00 4/14/15 my-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 121 10 20 0 Station (feet)

No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 1a XS - 2, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation	
0.0	124.86	
3.5	124.80	
5.3	124.61	
5.3 7.3	124.18	
8.4	123.70	
9.5	123.46	
10.4	123.58	
11.7	123.81	
13.0	123.94	
13.8	123.95	
14.6	124.23	
17.4	124.66	
20.2	124.62	
		•

SUMMARY DATA	
Bankfull Elevation:	124.3
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	7.9
Flood Prone Area Elevation:	125.1
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.8
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.33

Stream Type C/E Lamm UT-1a XS - 2, Riffle 126 (*feet*) *Elevation* (*feet*) 125 ----Bankfull Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 123 10 20 0 Station (feet) No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2 XS - 1, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation	
0.3	123.88	
3.6	123.62	
5.9	123.32	
7.7	122.87	
8.5	122.68	
8.8	122.79	
10.0	122.72	
10.9	122.93	
11.5	123.15	
13.9	123.67	
16.8	123.91	
19.7	123.92	

SUMMARY DATA	
Bankfull Elevation:	123.4
Bankfull Cross-Sectional Area:	3.1
Bankfull Width:	7.7
Flood Prone Area Elevation:	124.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.1
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.14

Stream Type C/E Lamm UT-2 XS - 1, Riffle 125 (*feet*) (*feet*) (*feet*) 123 ----Bankfull ---- Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 122 10 0 20 Station (feet)

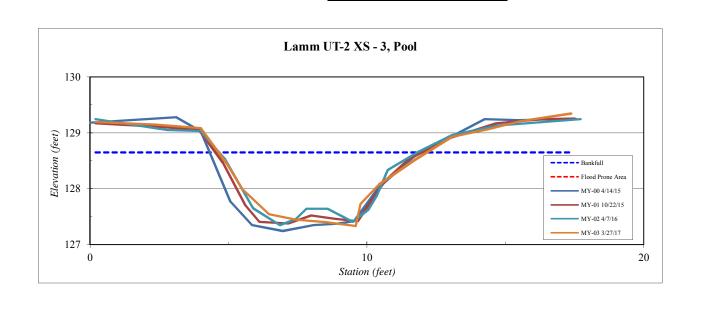
No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2 XS - 2, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

126.26 126.22 125.93 125.31 125.22 125.20 125.31 125.44 125.61 126.05 126.22
125.93 125.31 125.22 125.20 125.31 125.44 125.61 126.05
125.31 125.22 125.31 125.44 125.61 126.05
125.22 125.20 125.31 125.44 125.61 126.05
125.20 125.31 125.44 125.61 126.05
125.31 125.44 125.61 126.05
125.44 125.61 126.05
125.61 126.05
126.05
126.22

SUMMARY DATA		
Bankfull Elevation:	125.8	
Bankfull Cross-Sectional Area:	2.9	
Bankfull Width:	7.0	
Flood Prone Area Elevation:	126.4	
Flood Prone Width:	50.0	
Max Depth at Bankfull:	0.6	
Mean Depth at Bankfull:	0.4	
W / D Ratio:	16.9	
Entrenchment Ratio:	7.1	
Bank Height Ratio:	1.2	

Stream Type С Lamm UT-2 XS - 2, Riffle 127 Elevation (feet) 150 ----Bankfull Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 125 10 0 Station (feet) No problems have been noted in this reach. Elevated BHR results from shallow channel depth.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 3, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.2	129.2
2.4	129.1
4.0	129.1
5.0	128.4
5.5	128.0
6.5	127.5
7.4	127.4
8.5	127.4
9.6	127.3
9.8	127.7
10.4	128.1
11.8	128.5
13.1	128.9
14.4	129.1
15.6	129.2
17.4	129.3

SUMMARY DATA	
Bankfull Elevation:	128.7
Bankfull Cross-Sectional Area:	6.1
Bankfull Width:	7.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

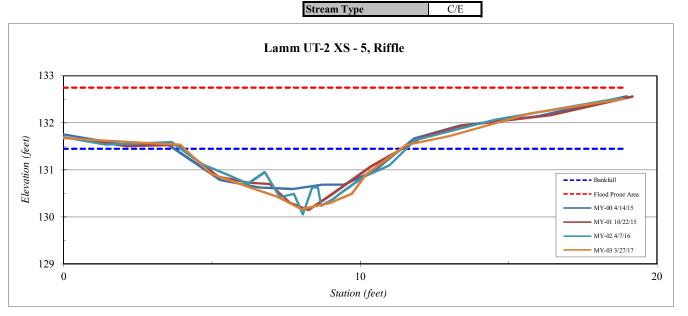
C/E

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2 XS - 4, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation	
0.0	129.84	
2.8	129.81	
4.0	129.68	
5.1	129.39	
5.6	129.11	
6.2	129.01	
7.1	129.09	
8.2	129.25	
9.9	129.20	
11.0	129.42	
13.0	129.75	
14.1	129.98	
17.1	130.26	

SUMMARY DATA	
Bankfull Elevation:	129.7
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	8.8
Flood Prone Area Elevation:	130.4
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	22.8
Entrenchment Ratio:	5.7
Bank Height Ratio:	1.0

C/E


Lamm UT-2 XS - 4, Riffle

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2 XS - 5, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation
0.0	131.68
3.2	131.56
3.9	131.53
5.0	130.92
6.4	130.60
7.2	130.43
8.0	130.16
9.0	130.29
9.7	130.49
10.2	130.90
11.6	131.53
13.0	131.72
15.7	132.20
18.9	132.51

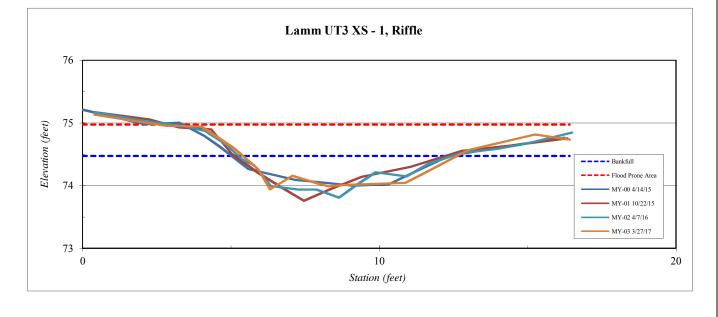
SUMMARY DATA	
Bankfull Elevation:	131.5
Bankfull Cross-Sectional Area:	5.6
Bankfull Width:	7.3
Flood Prone Area Elevation:	132.8
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	9.5
Entrenchment Ratio:	6.8
Bank Height Ratio:	1.3

Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2 XS - 6, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

SU	Elevation	Station
Ba	133.80	-0.2
Ba	133.67	2.7
Ba	133.15	5.0
Fl Fl	132.85	6.1
Fl	132.77	7.0
\mathbf{M}	132.62	7.9
M	132.58	8.3
W	132.87	9.1
Er	133.19	9.5
Ba	133.56	11.5
	133.93	14.1
2		
fee		
) u		
atio		
Elevation (feet)		
E		

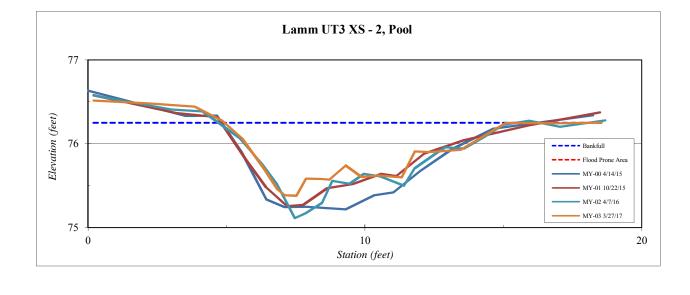
SUMMARY DATA	
Bankfull Elevation:	133.3
Bankfull Cross-Sectional Area:	2.0
Bankfull Width:	5.3
Flood Prone Area Elevation:	134.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	14.0
Entrenchment Ratio:	9.4
Bank Height Ratio:	1.17


C/E

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 1, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

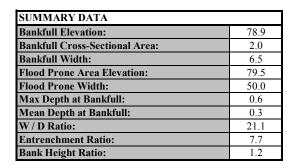
Station	Elevation
0.4	75.13
2.8	74.96
4.0	74.94
5.1	74.60
5.9	74.26
6.3	73.94
7.1	74.16
7.9	74.04
8.3 8.9	73.99
8.9	74.01
9.7	74.03
10.9	74.05
11.6	74.22
12.5	74.45
13.0	74.57
15.2	74.82
16.4	74.74

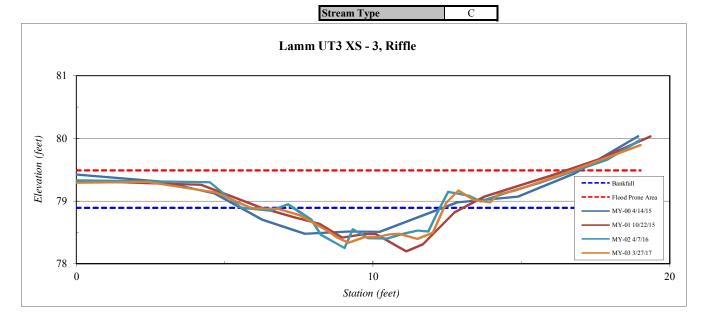
SUMMARY DATA	
Bankfull Elevation:	74.5
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	7.2
Flood Prone Area Elevation:	75.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.9
Entrenchment Ratio:	6.9
Bank Height Ratio:	1.0


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 2, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.2	76.5
2.2	76.5
3.8	76.4
4.8	76.3
5.6	76.1
6.4	75.7
6.8	75.5
7.1	75.4
7.5	75.4
7.9	75.6
8.4	75.6
8.7	75.6
9.3	75.7
9.9	75.6
10.5	75.6
11.0	75.6
11.3	75.6
11.8	75.9
12.3	75.9
13.5	75.9
15.1	76.2
17.0	76.2
18.5	76.3

SUMMARY DATA	
Bankfull Elevation:	76.3
Bankfull Cross-Sectional Area:	4.8
Bankfull Width:	10.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

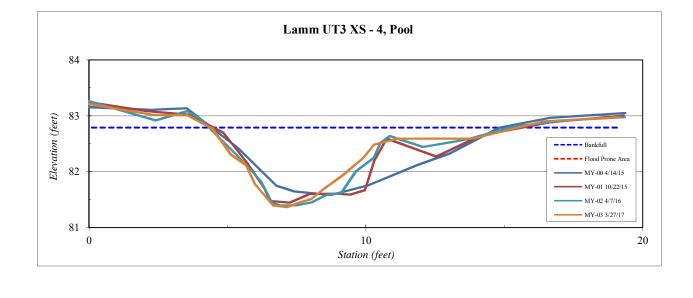




C1 .	
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 3, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.3	79.29
2.4	79.31
4.7	79.14
5.9	78.89
6.8	78.88
7.5	78.78
8.5	78.52
8.8	78.42
9.2	78.33
9.7	78.42
10.2	78.43
10.5	78.47
10.9	78.48
11.5	78.39
12.0	78.49
12.5	78.97
12.9	79.17
13.4	79.02
13.9	78.98
14.2	79.11
14.8	79.2
16.1	79.4
19.0	79.9

UT 3 has slight resorting of fill material in the channel; however, area has primarily remained constant and no significant erosion is apparent.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 4, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation	
-0.2	83.2	
2.3	83.0	
3.6	83.0	
4.5	82.8	
5.1	82.3	
5.7	82.1	
6.0	81.8	
6.6	81.4	
7.2 7.7	81.4	
7.7	81.5	
8.0	81.5	
8.5	81.7	
9.2	81.9	
9.9	82.3	
10.3	82.5	
11.2	82.6	
13.8	82.6	
16.4	82.9	
19.2	83.0	

SUMMARY DATA	
Bankfull Elevation:	82.8
Bankfull Cross-Sectional Area:	6.2
Bankfull Width:	11.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

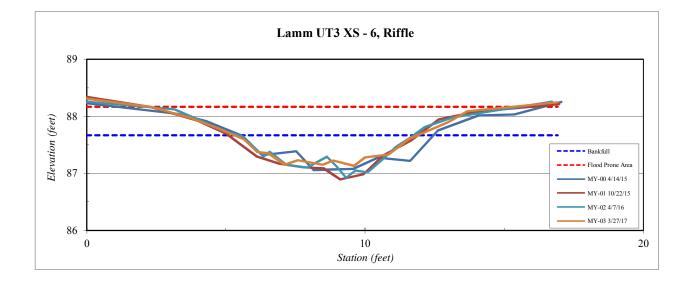
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 5, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	85.86
2.3	85.83
4.6	85.62
5.4	85.37
5.9	85.01
6.5	84.54
7.0	84.64
7.2	84.29
7.7	84.44
8.1	84.44
8.5	84.23
9.0	84.21
9.2	84.40
9.9	84.46
10.3	84.92
10.6	85.07
11.5	85.41
12.5	85.86
13.9	85.91
15.6	85.87
17.5	85.8

SUMMARY DATA **Bankfull Elevation:** 85.3 Bankfull Cross-Sectional Area: 4.0 **Bankfull Width:** 5.8 Flood Prone Area Elevation: 86.4 Flood Prone Width: 50.0 Max Depth at Bankfull: 1.1 Mean Depth at Bankfull: 0.7 W / D Ratio: 8.4 **Entrenchment Ratio:** 8.6 Bank Height Ratio: 1.38

Stream Type C/E Lamm UT3 XS - 5, Riffle 87 86 Elevation (feet) Bankfull --- Flood Prone Area 85 - MY-00 4/14/15 - MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 84 10 0 20 Station (feet)

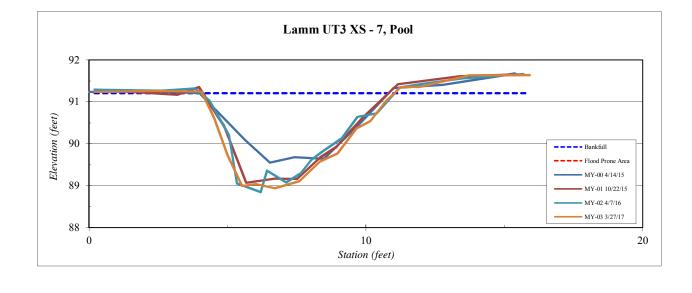
Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 3 years. No problems are visible in this reach.


Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 6, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

ation	Station
31	0.0
16	2.3
97	3.7
80	4.7
60	5.6
38	6.1
35	6.5
15	7.1
23	7.6
16	8.5
22	8.9
13	9.6
28	10.0
33	10.8
61	11.6
90	13.0
09	13.7
25	16.9

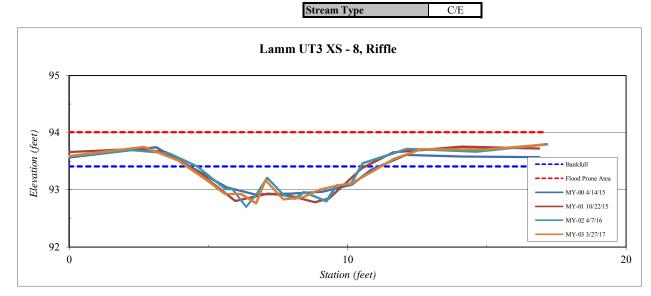
SUMMARY DATA	
Bankfull Elevation:	87.7
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	6.6
Flood Prone Area Elevation:	88.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	18.9
Entrenchment Ratio:	7.6
Bank Height Ratio:	1.0

C/E


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 7, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.2	91.2
2.4	91.3
4.1	91.2
4.5	90.6
5.0	89.7
5.5	89.0
6.0	89.0
6.7	88.9
7.6	89.1
8.3	89.6
9.0	89.8
9.7	90.4
10.2	90.5
10.7	91.0
11.3	91.4
12.0	91.4
13.7	91.6
15.9	91.6

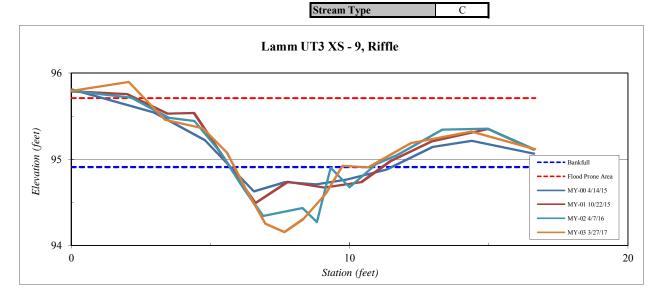
SUMMARY DATA	
Bankfull Elevation:	91.2
Bankfull Cross-Sectional Area:	9.9
Bankfull Width:	6.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	1.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 8, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation
0.0	93.59
2.7	93.75
3.9	93.51
5.0	93.16
5.6	92.93
6.2	92.93
6.7	92.77
7.0	93.17
7.7 8.4	92.83
	92.87
9.0	93.01
9.7	93.08
10.1	93.12
10.9	93.32
11.6	93.54
12.7	93.71
14.9	93.71
17.0	93.79

SUMMARY DATA	
Bankfull Elevation:	93.4
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	7.0
Flood Prone Area Elevation:	94.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	19.6
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.5

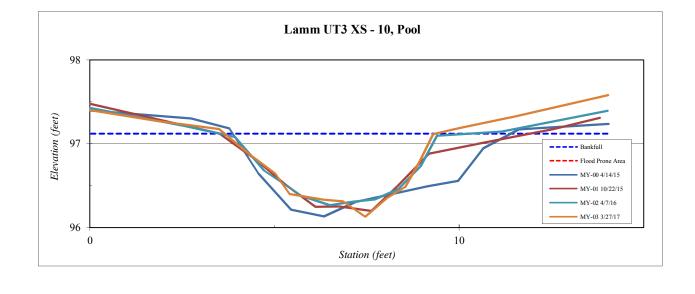

No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 9, Riffle
Feature	Riffle
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	95.79
2.1	95.90
3.4	95.46
4.7	95.36
5.6	95.08
6.2	94.67
7.0	94.25
7.7	94.15
8.3	94.31
9.2	94.60
9.7	94.93
10.7	94.91
12.2	95.19
14.4	95.32
16.7	95.12

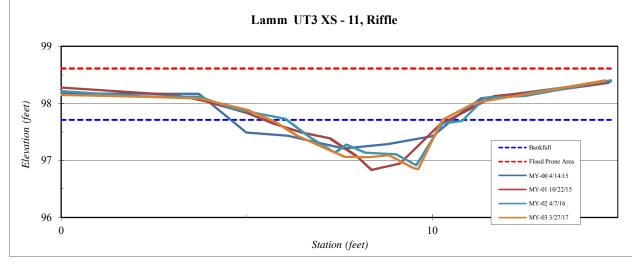
SUMMARY DATA	
Bankfull Elevation:	94.9
Bankfull Cross-Sectional Area:	1.8
Bankfull Width:	4.1
Flood Prone Area Elevation:	95.7
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	9.3
Entrenchment Ratio:	12.2
Bank Height Ratio:	1.6

Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 2 years. No problems are visible in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 10, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.2	97.4
1.8	97.3
3.5	97.2
4.3	96.9
5.0	96.6
5.4	96.4
6.3	96.3
6.9	96.3
7.5	96.1
8.0	96.3
8.5	96.5
8.9	96.8
9.3	97.1
10.0	97.2
11.5	97.3
14.0	97.6

SUMMARY DATA	
Bankfull Elevation:	97.1
Bankfull Cross-Sectional Area:	3.4
Bankfull Width:	5.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

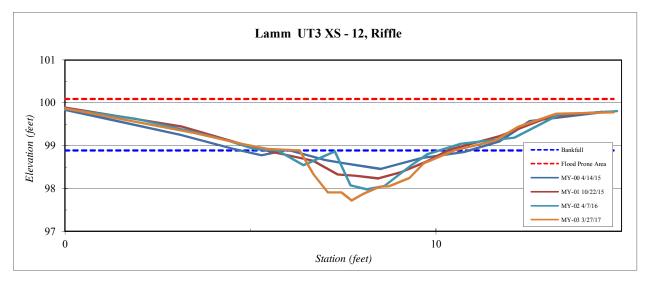

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 11, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation
-0.2	98.15
2.5	98.11
3.7	98.08
5.0	97.88
5.8	97.67
6.4	97.43
7.0	97.25
7.6	97.06
8.3	97.06
8.8	97.09
9.5	96.87
9.6	96.85
10.3	97.71
11.2	98.01
14.7	98.40

SUMMARY DATA	
Bankfull Elevation:	97.7
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	4.6
Flood Prone Area Elevation:	98.6
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	9.2
Entrenchment Ratio:	10.9
Bank Height Ratio:	1.5

Stream Type C/E

No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

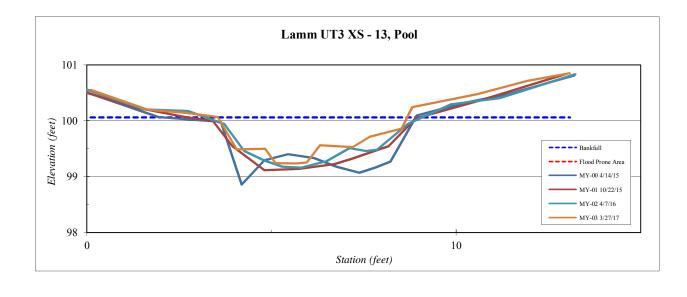

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 12, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	

Station	Elevation
-0.2	99.91
3.5	99.29
4.7	99.05
5.5	98.92
6.3	98.89
6.7	98.33
7.1 7.4	97.91
7.4	97.91
7.7	97.72
8.0	97.87
8.5	98.04
8.7	98.05
9.3	98.24
9.7	98.59
10.5	98.89
11.6	99.11
12.2	99.44
13.2	99.75
14.8	99.78

SUMMARY DATA	
Bankfull Elevation:	98.9
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	4.2
Flood Prone Area Elevation:	100.1
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	6.5
Entrenchment Ratio:	11.9
Bank Height Ratio:	2.0

Stream Type C

Minor downcutting between two large rocks. Riffle is immediately upstream from a cross vane and appears stable. Small channel so BHR results are elevated.

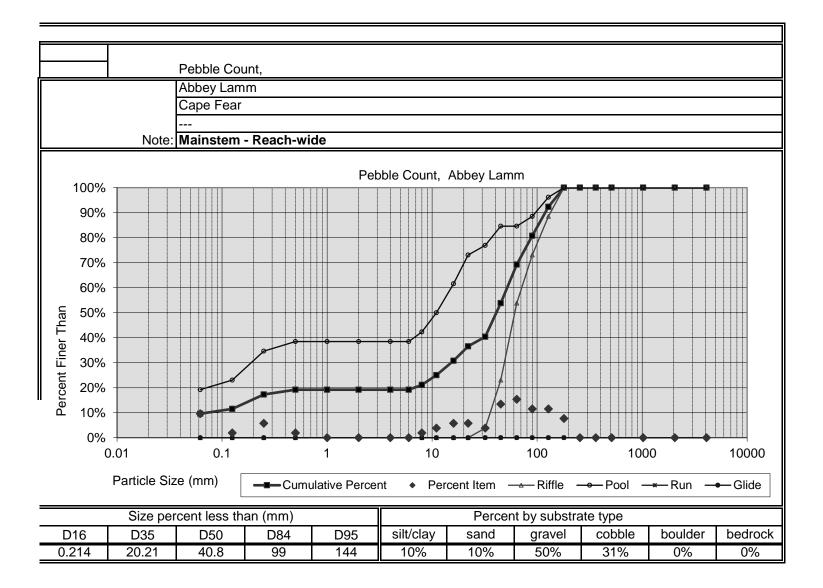

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 13, Pool
Feature	Pool
Date:	3/27/2017
Field Crew:	Perkinson, Jernigan

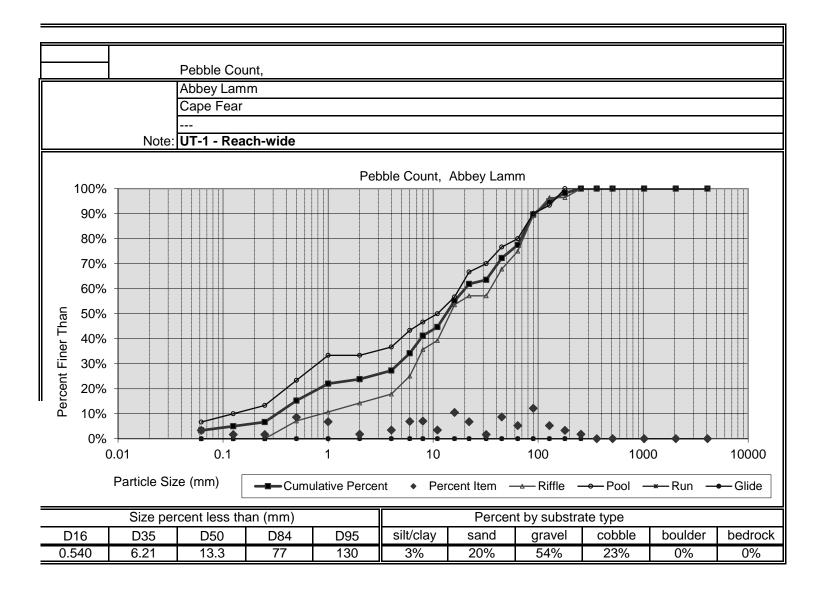
Station	Elevation
0.1	100.5
1.6	100.2
2.7	100.1
3.6	100.1
4.1	99.5
4.8	99.5
5.1	99.2
5.7	99.2
6.0	99.2
6.3	99.6
7.2	99.5
7.7	99.7
8.5	99.9
8.8	100.2
10.6	100.5
11.9	100.7
13.1	100.8

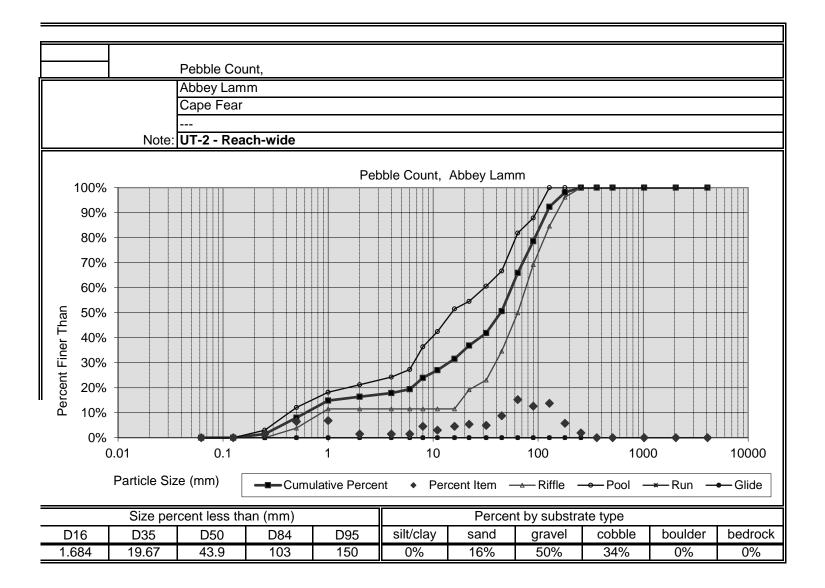
SUMMARY DATA	
Bankfull Elevation:	100.1
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	5.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

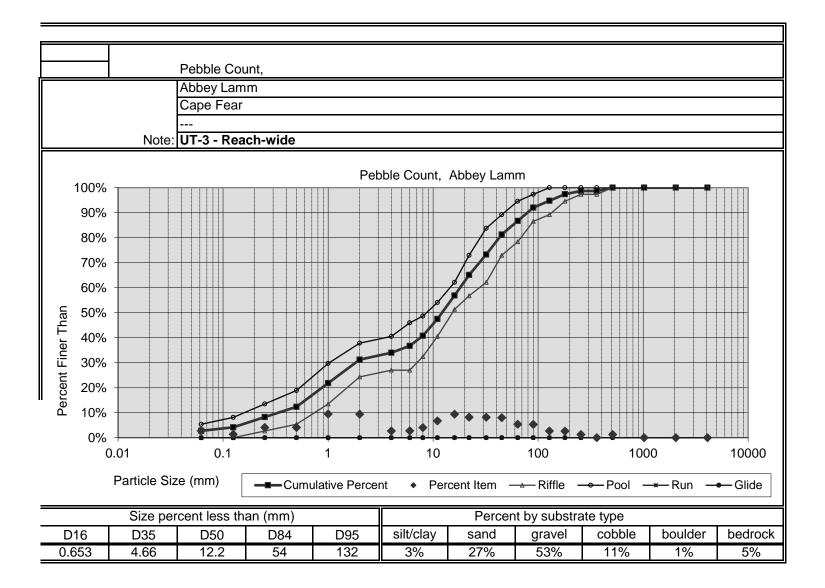
Stream Type

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 14, Riffle	
Feature	Riffle	
Date:	3/27/2017	
Field Crew:	Perkinson, Jernigan	


Station	Elevation
-0.2	99.63
2.4	99.86
4.3	99.58
5.2	99.45
6.4	99.17
7.0	99.11
7.2	99.11
7.7	99.11
8.4	98.92
8.8	99.19
10.0	99.40
10.9	99.53
12.2	99.78
14.3	100.01


SUMMARY DATA	
Bankfull Elevation:	99.7
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	8.3
Flood Prone Area Elevation:	100.5
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	23.0
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.14




Stream Type С Lamm UT3 XS - 14, Riffle 101 Elevation (feet) 66 ----Bankfull --- Flood Prone Area 99 MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 98 10 0 Station (feet)

No problems have been noted in this reach. Elevated BHR results from shallow channel depth.

Table 11A. Baseline Morphology and Hydraulic Summary Lamm UT 1

Parameter	USGS	S Gage Data		re-Exist Conditio	0	•	ect Refe larock P			ect Refe nusey Fa			Design			As-bui	lt
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)		S gage data is	4	12	6.5	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	6	9.1	8.6
Floodprone Width (ft)		ilable for this	6	27	17	15	25	18	122	140	131	30	90	50			50
BF Cross Sectional Area (ft2)		project			3.5			8			14.7			3.5	3.6	6.7	4.0
BF Mean Depth (ft)			0.3	0.9	0.6	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.5	0.7	0.6
BF Max Depth (ft)			0.7	1.3	1	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.7	1.2	0.9
Width/Depth Ratio			4.4	40	13.8	8	15.1	10.1	8	9	9	12	16	14	10	19	13
Entrenchment Ratio			1	6.8	2.9	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	6	8	5.8
Bank Height Ratio			1.3	2.6	1.7	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===			===			===				6.3	9.6	8.9
Hydraulic radius (ft)					===			===			===			=	0.4	0.7	0.6
Pattern																	
Channel Beltwidth (ft)				attern of		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)				pools d		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)			straigh	ntening a	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern of				===			===				5	44	15
Riffle slope (ft/ft)				pools d		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	1.10%	9.83%	2.98%
Pool length (ft)			straigh	ntening a	activties			===			===				5	12	8
Pool spacing (ft)						25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																	
d50 (mm)					===			===			===						===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			466
Channel Length (ft)					===			===			===			===			559
Sinuosity					1.02			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					2.84%			2.58%			0.53%			2.56% - 3.62%			2.56%
BF slope (ft/ft)																	
Rosgen Classification				<u> </u>	E/G 5			E 4/5		<u> </u>	E 4/5			E/C 3/4			E/C 3/4

Table 11B. Baseline Morphology and Hydraulic Summary

Lamm UT 2

Parameter	USG	S Gage	Data		re-Exist Conditi	0	v .	ect Refe larock P		•	ect Refei usey Fa			Design			As-built	٨
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage d	ata is	7.1	15.6	9.7	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	5.9	9.7	7.6
Floodprone Width (ft)	unava	ailable fo	or this	15	40	27	15	25	18	122	140	131	30	90	50			50
BF Cross Sectional Area (ft2)		project				3.8			8			14.7			3.5	2.3	5.5	3.2
BF Mean Depth (ft)				0.2	0.5	0.4	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.4	0.6	0.4
BF Max Depth (ft)				0.5	1.3	0.8	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.5	1	0.7
Width/Depth Ratio				14.2	78	28.8	8	15.1	10.1	8	9	9	12	16	14	15	21	17
Entrenchment Ratio				1	5.6	3	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	5	9	6.6
Bank Height Ratio				1	3	1.6	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)						===			===			==			===	6.1	10.1	7.7
Hydraulic radius (ft)						===			===			==			===	0.3	0.5	0.4
Pattern																		
Channel Beltwidth (ft)						ffles and	20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)					ools due		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)				straigh	ntening	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio							2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	8	4
Profile																		
Riffle length (ft)						ffles and			===			==			===	5	26	12
Riffle slope (ft/ft)					ools due		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	0.84%	4.64%	2.94%
Pool length (ft)				straigh	ntening	activties			===			===			===	4	14	8
Pool spacing (ft)							25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters									•	•				•	•			<u>.</u>
Valley Length (ft)						===			===			===			===			387
Channel Length (ft)						===			===			===			===			464
Sinuosity						1.03			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)				[3.07% -			2.58%			0.53%			2.56% -			3.01%
- · · ·						4.31%									3.62%			
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						C/G 5			E 4/5			E 4/5			E/C 3/4			E/C 3/4

^Measured as-built numbers do not include D-type reach.

Table 11C. Baseline Morphology and Hydraulic SummaryLamm UT 3

Parameter	USGS	Gage Data		e-Exist Conditio	0	-	ect Refe larock P		•	ect Refe usey Fa			Design			As-bui	llt
Dimension	Min 1	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS g	gage data is	3.4	12.3	7.2	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	6.3	8.6	7.3
Floodprone Width (ft)	unavaila	able for this	18	40	26	15	25	18	122	140	131	30	90	50			250
BF Cross Sectional Area (ft2)	p	roject			2.6			8			14.7			3.5	2	3.1	2.5
BF Mean Depth (ft)			0.2	0.8	0.4	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.3	0.5	0.3
BF Max Depth (ft)			0.5	1.3	0.8	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.4	0.8	0.6
Width/Depth Ratio			4.3	61.5	24	8	15.1	10.1	8	9	9	12	16	14	15	27	23
Entrenchment Ratio			2.4	7	4.1	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	6	8	6.8
Bank Height Ratio			1	2	1.4	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===						===				6.4	8.8	7.4
Hydraulic radius (ft)					===						===				0.3	0.4	0.3
Pattern																	
Channel Beltwidth (ft)				attern of		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)				pools d		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)			straigh	tening a	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	8	4
Profile							-				-	-					
Riffle length (ft)				attern of				===			===			===	6	66	21
Riffle slope (ft/ft)				pools d		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	0.82%	6.50%	3.13%
Pool length (ft)			straign	tening a	activties			===			===			===	4	14	7
Pool spacing (ft)						25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																-	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters					-		-				-	-				· ·	
Valley Length (ft)					===			===			===			===			846
Channel Length (ft)					===			===			===			===			1015
Sinuosity					1.05			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					3.34%			2.58%			0.53%			2.56% -			3.19%
														3.62%			
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Fc 5/6			Eg 5			E 4/5			E/C 3/4			C 3/4

Table 11D. Baseline Morphology and Hydraulic Summary

Lamm Main Upstream

Parameter	USG	S Gage D	ata		re-Exist Conditi	-	v	ect Refe larock P		•	ect Refe usey Fa			Design	l		As-bu	ilt
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage da	ta is	11.7	26.5	18.5	8	12.1	8.1	10.7	11.3	11	11.2	12.9	12.1	12.3	13.3	12.7
Floodprone Width (ft)	unava	ailable for	this	29	75	56	15	25	18	122	140	131	20	90	40			250
BF Cross Sectional Area (ft2)		project				10.4			8			14.7			10.4	8.8	12.5	10.4
BF Mean Depth (ft)				0.4	0.9	0.6	0.8	1	0.8	1.3	1.4	1.4	0.8	0.9	0.9	0.7	1	0.85
BF Max Depth (ft)				1.1	1.7	1.3	1.1	1.4	1.4	1.9	2	2	1.1	1.4	1.3	1	12.6	1.3
Width/Depth Ratio				11.7	66.3	31.5	8	15.1	10.1	8	9	9	12	16	14	13	17	15
Entrenchment Ratio				1.9	24	6.2	1.9	2.2	2.1	11	13	12	1.7	7.4	3.3	7	7	7.05
Bank Height Ratio				1	1.9	1.2	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)						==			===			====			===	13	13.9	13.2
Hydraulic radius (ft)						=			====			====			===	0.7	0.9	0.8
Pattern																		
Channel Beltwidth (ft)						ffles and	20	38	22.8	17	36	29.8	36	73	48	36	73	48
Radius of Curvature (ft)					ools due		11	27	16.5	9	113	30.6	24	121	36	24	121	36
Meander Wavelength (ft)				straigh	ntening	activties	44	116	68.4	10	91	62.9	73	145	103	73	145	103
Meander Width ratio							2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile											-							
Riffle length (ft)						ffles and			===			===			===	9	66	26
Riffle slope (ft/ft)					ools due		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	2.15%	4.48%	2.86%	0.00%	3.87%	1.86%
Pool length (ft)				straigh	ntening	activties			===			===			===	5	34	12
Pool spacing (ft)							25	69	37.2	2	7.4	4	36	97	48	36	97	48
Substrate								-			-					-		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			====			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			949
Channel Length (ft)						===			===			====			===			1139
Sinuosity						1.05			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)						1.76%			2.58%			0.53%			1.79%			1.57%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Eg5/Fc			E 4/5			E 4/5			E/C 3/4			E/C 3/4

Table 11E. Baseline Morphology and Hydraulic SummaryLamm Main Downstream

Parameter	USG	S Gage Dat	a		re-Exist Conditi	0	v	ect Refe larock F		•	ect Refe lusey Fa			Design	l		As-bu	ilt
Dimension	Min	Max M	ed	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage data	is	8.7	17	13	8	12.1	8.1	10.7	11.3	11	11.2	12.9	12.1	12.8	13.4	13.0
Floodprone Width (ft)	unava	ailable for th	is	17	24	22	15	25	18	122	140	131	20	90	40			250
BF Cross Sectional Area (ft2)		project				10.4			8			14.7			10.4	9.7	11.8	11.3
BF Mean Depth (ft)				0.6	1.2	0.9	0.8	1	0.8	1.3	1.4	1.4	0.8	0.9	0.9	0.8	0.9	0.8
BF Max Depth (ft)				0.9	1.9	1.4	1.1	1.4	1.4	1.9	2	2	1.1	1.4	1.3	1.1	1.3	1.3
Width/Depth Ratio				7.3	28.3	17.4	8	15.1	10.1	8	9	9	12	16	14	15	17	16
Entrenchment Ratio				1.2	2.6	1.8	1.9	2.2	2.1	11	13	12	1.7	7.4	3.3	7	7	6.9
Bank Height Ratio				1.3	2.7	2	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)						===			===			===			===	13.2	14.1	13.6
Hydraulic radius (ft)						===			===			===			===	0.7	0.9	0.8
Pattern																		
Channel Beltwidth (ft)			ĺ	•		iffles and	20	38	22.8	17	36	29.8	36	73	48	36	73	48
Radius of Curvature (ft)				•	ools due		11	27	16.5	9	113	30.6	24	121	36	24	121	36
Meander Wavelength (ft)				straigh	ntening	activties	44	116	68.4	10	91	62.9	73	145	103	73	145	103
Meander Width ratio							2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																		
Riffle length (ft)						iffles and			===			===			===	15	142	59
Riffle slope (ft/ft)				•	ools due		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	2.15%	4.48%	2.86%	0.71%	3.22%	1.93%
Pool length (ft)				straigh	ntening	activties			===			===			===	7	40	18
Pool spacing (ft)							25	69	37.2	2	7.4	4	36	97	48	36	97	48
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)			[===			====			===			===			===
Additional Reach Parameters			ľ															
Valley Length (ft)			ſ			===			===			===			===			961
Channel Length (ft)			ľ			===			===			===			===			1153
Sinuosity			ſ			NA			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)			ſ			NA			2.58%			0.53%			1.79%			1.72%
BF slope (ft/ft)			ľ			===			===			===			===			===
Rosgen Classification						Eg5/Fc			E 4/5			E 4/5			E/C 3/4			E/C 3/4

Table 12A. Morphology and Hydraulic Monitoring Summary

Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1 I	Pool (M	ain Do	wn)			XS 2	Riffle	(Main	Down)		XS 3	Riffle (Main	Down)			XS 4	Riffle (Main	Down)			XS 5	Pool (Main I	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	13	12.2	12.5	11.8			12.8	14.4	12.6	13.2			13.1	*	12.9	14.3			13	12.7	12.1	12.6			14.1	14.8	15.7	17.2		
Floodprone Width (ft)							90	90	90	- 90			90	*	90	90			90	90	90	90								
BF Cross Sectional Area (ft2)	11.2	12.2	9.7	9.4			9.7	11.1	12.6	9.5			11.8	*	9.1	8.1			11.3	10.5	10.3	9.4			11.8	6.6	7.7	7.6		
BF Mean Depth (ft)	0.9	1.0	0.8	0.8			0.8	0.8	1.0	0.7			0.9	*	0.7	0.6			0.9	0.8	0.9	0.7			0.8	0.4	0.5	0.4		
BF Max Depth (ft)	1.7	1.5	1.6	1.4			1.1	1.1	1.2	1.2			1.3	*	1.3	1.2			1.3	1.4	1.4	1.2			1.7	0.8	0.8	0.8		
Width/Depth Ratio							16.9	18.7	12.6	18.3			14.5	*	18.3	25.2			15.0	15.4	14.2	16.9								
Entrenchment Ratio							7.0	6.3	7.1	6.8			6.9	*	7.0	6.3			6.9	7.1	7.4	7.1								
Bank Height Ratio							1	1	1.09	1.09			1	*	1	1			1	1.08	1.08	1.00								
Wetted Perimeter (ft)	13.6	12.7	13.2	12.3			13.2	14.7	13	13.6			13.7	*	13.4	14.7			13.6	13.2	12.8	13			15	15.1	15.9	17.3		
Hydraulic Radius (ft)	0.8	0.8	0.7	0.8			0.7	0.8	1.0	0.7			0.9	*	0.7	0.6			0.8	0.8	0.8	0.7			0.8	0.4	0.5	0.4		
Parameter		XS6R	Riffle (M	lain Do	wn)			XS 7	Riffle	(Main	Down)		XS 8	Riffle (Main	Down)			XS 9	Riffle (Main	Down)			XS 10	Riffle	(Main	Down)

Parameter		XS 6 R	Riffle (M	ain Do	own)			XS 7]	Riffle	Main	Down)			XS 8	Riffle	Main	Down)			XS 9 1	Riffle ((Main	Down)			XS 10	Riffle	(Main	Down	ι)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	13.4	13.3	13	12.7			12.8	11.2	12.2	11.9			13.6	13.5	14	14.7			12.3	14	12.5	12.1			16.1	17.2	17.3	16.9		
Floodprone Width (ft)	90	90	90	90			90	90	90	90			90	90	90	90			90	90	90	90			90	90	90	90		
BF Cross Sectional Area (ft2)	11.3	11	13.4	12.1			8.7	8.9	9.1	8.8			11.6	8.2	7.6	6.8			9.8	9.8	8.9	7.3			12.4	11.8	12.1	10.1		
BF Mean Depth (ft)	0.8	0.8	1.0	1.0			0.7	0.8	0.7	0.7			0.9	0.6	0.5	0.5			0.8	0.7	0.7	0.6			0.8	0.7	0.7	0.6		
BF Max Depth (ft)	1.3	1.6	1.8	1.7			1.2	1.2	1.3	1.2			1.5	0.9	0.8	0.8			1.2	1.3	1.2	1.3			1.3	1.1	1.2	1.2		
Width/Depth Ratio	15.9	16.1	12.6	13.3			18.8	14.1	16.4	16.1			15.9	22.2	25.8	31.8			15.4	20.0	17.6	20.1			20.9	25.1	24.7	28.3		
Entrenchment Ratio	6.7	6.8	6.9	7.1			7.0	8.0	7.4	7.6			6.6	6.7	6.4	6.1			7.3	6.4	7.2	7.4			5.6	5.2	5.2	5.3		
Bank Height Ratio	1	1.23	1.38	1.31			1	1	1	1			1	1	1	1			1	1.08	1	1.08			1	1	1	1		
Wetted Perimeter (ft)	14.1	13.9	13.9	13.4			13.2	11.6	12.8	12.4			14.3	13.8	14.4	14.9			12.9	14.5	12.8	15.2			16.6	17.5	17.6	17.2		
Hydraulic Radius (ft)	0.8	0.8	1.0	0.9			0.7	0.8	0.7	0.7			0.8	0.6	0.5	0.5			0.8	0.7	0.7	0.5			0.7	0.7	0.7	0.6		

* Note: Cross Section 3 was not measured due to yellow jacket nest at cross section.

Table 12B. Morphology and Hydraulic Monitoring Summary Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Lamm UT-Main (Downstrea Parameter		7-00 (20			-01 (2			-02 (2	016)	MY	-03 (2	017)	MY	-04 (2	018)	MY	-05 (2	019)
	Min	Max	Med	Min		Med	Min	Max	Med	Min	Max	-		Max	, í	Min		
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)) 0.71% 3.22% 1.93%																	
Riffle Slope (ft/ft)	0.71% 3.22% 1.93%) 7 40 18																	
Pool Length (ft)) 0.71% 3.22% 1.93%) 7 40 18																	
Pool Spacing (ft)) 0.71% 3.22% 1.93%) 7 40 18																	
Additonal Reach Parameters																		
Valley Length (ft)		961			961			961			961							
Channel Length (ft)		1,153			1,153			1,153			1153							
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0172																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8							
D84		60			67			97			99							
Rosgen Classification		C/E 3/4			C/E 3/4	1		C/E 3/4	1		C/E 3/4	Ļ						

Table 12C. Morphology and Hydraulic Monitoring SummaryLamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 11	Pool (M	ain Do	own)		2	XS 12	Riffle	(Main	Down)		XS 13	Riffle	(Main	Down	l)		XS 14	Riffle	(Main	Down)		XS 15	Pool (Main 1	Down))
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	13.4	10.5	10.7	11			11.9	11.5	11.8	12.5			15.4	16	17	15.8			13	13.3	12.9	13			16.1	13.8	12.6	12.6		
Floodprone Width (ft)							90	90	90	90			90	90	90	90			90	90	90	90								
BF Cross Sectional Area (ft2)	9.8	11.3	11.2	11.6			7.2	5.1	5.2	5.5			8.6	9.2	8.4	7.2			12.9	15.6	16	14.2			12.7	10.4	10.1	9.1		
BF Mean Depth (ft)	0.7	1.1	1.0	1.1			0.6	0.4	0.4	0.4			0.6	0.6	0.5	0.5			1.0	1.2	1.2	1.1			0.8	0.8	0.8	0.7		
BF Max Depth (ft)	1.4	1.6	1.6	1.6			1	1	0.8	0.6			0.9	1.5	1.1	1.3			1.4	2.2	1.9	1.9			1.8	1.6	1.5	1.4		
Width/Depth Ratio							19.7	25.9	26.8	28.4			27.6	27.8	34.4	34.7			13.1	11.3	10.4	11.9								
Entrenchment Ratio							7.6	7.8	7.6	7.2			5.8	5.6	5.3	5.7			6.9	6.8	7.0	6.9								
Bank Height Ratio							1	1	1	1			1	1.67	1.22	1.44			1	1.57	1.36	1.36								
Wetted Perimeter (ft)	13.9	11.3	11.5	11.9			12.2	11.7	11.7	12.9			15.6	16.6	17.5	16.5			13.6	14.5	14.4	14.3			16.7	14.4	13.4	13.4		
Hydraulic Radius (ft)	0.7	1	1.0	1.0			0.6	0.4	0.4	0.4			0.6	0.6	0.5	0.4			1	1.1	1.1	1.0			0.8	0.7	0.8	0.7		

Parameter		XS 16 I	Riffle (Ma	in Dov	vn)*			XS 17	Riffle ((Main l)*			XS 18	Riffle (Main l	Down)*	¢		XS 19	Pool (Main E)*	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)		16.0	16.2	16.0			14.3	14	13.9				13.2	13.1		13.5			12	12.1	11.8			
Floodprone Width (ft)	20.0	20.0	20.0	20.0			19	19	19	19			31	31	31	31								
BF Cross Sectional Area (ft2)	10.1	9.6	9.8	8.6			11.2	12.6	11.5	13.2			10.1	11.6	11.9	11.8			13.1	14.6	14.6	13.4		
BF Mean Depth (ft)	0.6	0.6	0.6	0.5			0.8	0.9	0.8	0.9			0.8	0.9	0.9	0.9			1.1	1.2	1.2	1.1		
BF Max Depth (ft)	0.8	0.9	1.0	0.9			1.3	1.4	1.1	1.2			1.2	1.4	1.5	1.4			1.4	1.9	1.7	1.5		
Width/Depth Ratio	26.0	26.7	26.8	29.8			18.3	15.6	16.8	15.7			17.3	14.8	14.9	15.4								
Entrenchment Ratio	1.2	1.3	1.2	1.3			1.3	1.4	1.4	1.3			2.3	2.4	2.3	2.3								
Bank Height Ratio	2.4	2.2	2.1	2.2			1.6	1.6	1.7	1.7			1.6	1.5	1.4	1.5								
Wetted Perimeter (ft)	16.4	16.2	16.5	16.2			15.3	14.9	14.9	15.7			14	14.1	14.7	14.8			12.9	13	12.8	12.6		
Hydraulic Radius (ft)	0.6	0.6	0.6	0.5			0.7	0.8	0.8	0.8			0.7	0.8	0.8	0.8			1	1.1	1.1	1.1		

* Enhancement (Level II) Reach

Table 12D. Morphology and Hydraulic Monitoring SummaryLamm UT-Main (Downstream) - Stream and Wetland Restoration Site

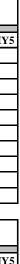

Parameter	М	Y-00 (20	15)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-04 (2	018)	MY	-05 (2	019)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	15	142																
Riffle Slope (ft/ft)	0.71%	3.22%																
Pool Length (ft)	7	40																
Pool Spacing (ft)	36																	
		_			-	-		-	-		-	-						
Additonal Reach Parameters																		
Valley Length (ft)		961			961			961			961							
Channel Length (ft)		1,153			1,153			1,153			1153							
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0172																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8							
D84		60			67			97			99							
Rosgen Classification		C/E 3/4			C/E 3/4	+		C/E 3/4	1		C/E 3/4	Ļ						

Table 12E. Morphology and Hydraulic Monitoring Summary Lamm Main (Upstream) Stream and Wetland Restoration Site

Lamm Main (Upstream) - S	stream	and we	etiand B	<i>kestor</i>	ation	Site																								
Parameter		XS 20) Pool (N	Aain U	J p)			XS 21	1 Riffl	e (Ma	in Up))		XS 22	2 Riffl	le (Ma	in Up))		XS 23	3 Riffl	e (Ma	in Up))		XS 2	4 Pool	l (Mai	in Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.1	8.1	11.8	11.7			13.3	13	12	13			12.6	13.4	13	13.3			12.3	13.3	11.9	12.8			12.8	13.1	12.1	12.9		
Floodprone Width (ft)							90	90	90	90			90	90	90	90			90	90	90	90								
BF Cross Sectional Area (ft2)	6.7	4.9	5.6	5.6			12.5	10	9.9	9.1			12.5	11.3	11.2	11.5			8.8	9.5	9.1	8.8			13.1	12.9	13.1	12.9		
BF Mean Depth (ft)	0.9	0.6	0.5	0.5			0.9	0.8	0.8	0.7			1.0	0.8	0.9	0.9			0.7	0.7	0.8	0.7			1.0	1.0	1.1	1.0		
BF Max Depth (ft)	1.3	1	1	1			1.4	1.5	1.6	1.6			1.4	1.9	1.9	2.2			1	1.3	1.5	1.4			1.8	1.6	1.7	1.6		
Width/Depth Ratio							14.2	16.9	14.5	18.6			12.7	15.9	15.1	15.4			17.2	18.6	15.6	18.6								
Entrenchment Ratio							6.8	6.9	7.5	6.9			7.1	6.7	6.9	6.8			7.3	6.8	7.6	7.0								
Bank Height Ratio							1	1.07	1.14	1.14			1	1.36	1.36	1.57			1	1.30	1.50	1.40								
Wetted Perimeter (ft)	8.4	8.6	12.2	12.2			13.9	13.4	12.4	13.7			13.3	14.4	13.9	14.7			13	13.9	12.6	13.3			13.6	13.9	12.9	13.7		
Hydraulic Radius (ft)	0.8	0.6	0.5	0.5			0.9	0.7	0.8	0.7			0.9	0.8	0.8	0.8			0.7	0.7	0.7	0.7			1	0.9	1.0	0.9		

Parameter		XS 25	Riffle (1	Main U	U p)			XS 2	6 Poo	l (Mai	n Up)			XS 27	7 Riffl	e (Ma	in Up)			XS 2	8 Poo	l (Mai	n Up)			XS 29	9 Riff	le (Ma	in Up))
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	13.0	15.4	15.2	15.2			13.3	13.4	13.9	13.5			12.0	12.8	12.3	12.4			11.4	11.0	10.3	10.4			12.8	12.7	12.5	12.3		
Floodprone Width (ft)	90.0	90.0	90.0	90.0									90.0	90.0	90.0	90.0									90.0	90.0	90.0	90.0		
BF Cross Sectional Area (ft2)	11.3	11.4	10.8	10.6			12.1	11.8	11.6	10.8			9.5	9.7	10.8	9.8			8.4	8.9	7.6	8.3			12.1	12.1	12.0	11.6		
BF Mean Depth (ft)	0.9	0.7	0.7	0.7			0.9	0.9	0.8	0.8			0.8	0.8	0.9	0.8			0.7	0.8	0.7	0.8			0.9	1.0	1.0	0.9		
BF Max Depth (ft)	1.4	1.2	1.3	1.3			1.8	1.6	1.7	1.6			1.2	1.2	1.4	1.2			1.3	1.5	1.4	1.4			1.4	1.5	1.4	1.4		
Width/Depth Ratio	15.0	20.8	21.4	21.8									15.2	16.9	14.0	15.7									13.5	13.3	13.0	13.0		
Entrenchment Ratio	6.9	5.8	5.9	5.9									7.5	7.0	7.3	7.3									7.0	7.1	7.2	7.3		
Bank Height Ratio	1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0									1.0	1.0	1.0	1.0		
Wetted Perimeter (ft)	13.5	15.8	15.7	15.6			14.0	14.0	14.4	14.0			12.4	13.1	12.8	12.8			11.8	11.7	10.9	11.0			13.5	13.4	13.3	12.9		
Hydraulic Radius (ft)	0.8	0.7	0.7	0.7			0.9	0.8	0.8	0.8			0.8	0.7	0.8	0.8			0.7	0.8	0.7	0.8			0.9	0.9	0.9	0.9		

Parameter		XS 30	Pool (N	lain U	p)			XS 31	Riffl	e (Mai	in Up)			XS 32	2 Riffl	e (Mai	in Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	12.3	12.6	11.7	12.4			11.6	11.4	11.6	11.7			12.7	13.2	13.9	14.1		
Floodprone Width (ft)							90	90	90	90			25	25	25	25		
BF Cross Sectional Area (ft2)	11.5	11	10	11.1			8.6	8.3	8.1	8.6			9	8.7	8.8	8.2		
BF Mean Depth (ft)	0.9	0.9	0.9	0.9			0.7	0.7	0.7	0.7			0.7	0.7	0.6	0.6		
BF Max Depth (ft)	1.7	1.8	1.7	1.8			1	1.2	1.2	1.2			1	0.9	1	0.8		
Width/Depth Ratio							15.6	15.7	16.6	15.9			17.9	20.0	22.0	24.2		
Entrenchment Ratio							7.8	7.9	7.8	7.7			2.0	1.9	1.8	1.8		
Bank Height Ratio							1	1.20	1.20	1.20			1	1	1	1		
Wetted Perimeter (ft)	12.9	13.2	12.5	13			12	11.9	12.3	12.1			13	13.6	14.2	14.3		
Hydraulic Radius (ft)	0.9	0.8	0.8	0.9			0.7	0.7	0.7	0.7			0.7	0.6	0.6	0.6		

7	4	5	

Table 12F. Morphology and Hydraulic Monitoring Summary Lamm Main (Upstream) - Stream and Wetland Restoration Site

Parameter	M	Y-00 (20	15)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-04 (2	018)	MY	-05 (2	019)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	10	66																
Riffle Slope (ft/ft)	0.00%	3.87%	1.86%															
Pool Length (ft)	5	34	12															
Pool Spacing (ft)	36	97	48															
Additonal Reach Parameters																		
Valley Length (ft)		949			949			949			949							
Channel Length (ft)		1,139			1,139			1,139			1139							
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0157																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8							
D84		60		67			97			99								
Rosgen Classification		C/E 3/4			C/E 3/4	1		C/E 3/4	1		C/E 3/4	1						

Table 12G. Morphology and Hydraulic Monitoring SummaryLamm UT-1 - Stream and Wetland Restoration Site

Parameter		XS	1 Pool	(UT 1	l)			XS	2 Rif	fle (U	T 1)			XS	3 Rif	fle (U	Г 1)			XS	4 Rif	fle (U	T 1)			XS	5 Riff	le (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.1	8.2	8	8.3			8	7.9	8	8.2			9.1	8.7	8.8	8.4			6	7.9	7	8.8			8.7	8.4	9	7.9		
Floodprone Width (ft)							50	50	50	50			50	50	50	50			50	50	50	50			50	50	50	50		
BF Cross Sectional Area (ft2)	6.4	5.4	5.4	4.5			5	4.5	4.3	4.6			6.7	6.5	6.5	6.4			3.6	3.6	3.5	4.1			4	4	3.7	3.5		
BF Mean Depth (ft)	0.8	0.7	0.7	0.5			0.6	0.6	0.5	0.6			0.7	0.7	0.7	0.8			0.6	0.5	0.5	0.5			0.5	0.5	0.4	0.4		
BF Max Depth (ft)	1.3	1.2	1.1	1.1			1	0.9	1	1			1.2	1.3	1.6	2			0.9	0.9	0.9	0.9			0.9	0.9	0.9	0.8		
Width/Depth Ratio							12.8	13.9	14.9	14.6			12.4	11.6	11.9	11.0			10.0	17.3	14.0	18.9			18.9	17.6	21.9	17.8		
Entrenchment Ratio							6.3	6.3	6.3	6.1			5.5	5.7	5.7	6.0			8.3	6.3	7.1	5.7			5.7	6.0	5.6	6.3		
Bank Height Ratio							1	1	1	1			1	1.08	1.33	1.67			1	1	1	1			1	1	1	1		
Wetted Perimeter (ft)	8.6	8.7	8.4	8.8			8.4	8.3	8.4	8.5			9.6	9.4	10.2	10.2			6.3	8.3	7.6	9.1			9	8.7	9.4	8.1		
Hydraulic Radius (ft)	0.7	0.6	0.6	0.5			0.6	0.5	0.5	0.5			0.7	0.7	0.6	0.6			0.6	0.4	0.5	0.5			0.4	0.5	0.4	0.4		

Parameter		XS	6 Riffle	e (UT :	1)			XS :	1 Riffl	e (UT	1- a)			XS 2	2 Riffl	e (UT	1-a)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.6	8.9	8.3	8.3			7.4	8	6.8	7.7			7.8	8.4	8	7.9		
Floodprone Width (ft)	17	18	17	17			50	50	50	14			50	50	50	50		
BF Cross Sectional Area (ft2)	4	3.8	4.2	3.9			2.5	2.7	1.9	2.1			3.4	3.7	3	3.5		
BF Mean Depth (ft)	0.5	0.4	0.5	0.5			0.3	0.3	0.3	0.3			0.4	0.4	0.4	0.4		
BF Max Depth (ft)	0.7	0.8	0.9	0.9			0.5	0.7	0.7	0.6			0.6	0.8	0.6	0.8		
Width/Depth Ratio	18.5	20.8	16.4	17.7			21.3	23.7	24.3	28.2			17.6	19.1	21.3	17.8		
Entrenchment Ratio	2.0	2.0	2.0	2.0			6.8	6.3	7.4	1.8			6.4	6.0	6.3	6.3		
Bank Height Ratio	1	1.14	1.29	1.29			1	1.40	1.40	1.20			1	1.33	1.00	1.33		
Wetted Perimeter (ft)	8.9	9.2	8.9	9			7.5	8.2	7.2	7.9			8	8.6	8.1	8.1		
Hydraulic Radius (ft)	0.4	0.4	0.5	0.4			0.3	0.3	0.3	0.3			0.4	0.4	0.4	0.4		

Table 12H.Morphology and Hydraulic Monitoring SummaryLamm UT-1 -Stream and Wetland Restoration Site

Parameter	MY	-00 (20	15)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-04 (2	018)	MY	-05 (2	019)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	5	44	15															
Riffle Slope (ft/ft)	1.10%	9.83%	2.98%															
Pool Length (ft)	5	12	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		466			466			466			466							
Channel Length (ft)		559			559			559			559							
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0256																
BF Slope (ft/ft)																		
D50		15.2			13.4			11			13.3							
D84		67			58			73			77							
Rosgen Classification	(C/E 3/4			C/E 3/4	1		C/E 3/4	1		C/E 3/4	1						

Table 12I. Morphology and Hydraulic Monitoring SummaryLamm UT-2 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	e (UT 2	2)			XS	2 Rif	fle (U	T 2)			X	S 3 Po	ol (UT	2)			XS	4 Riff	'le (U'	Г 2)			XS	5 Rif	fle (U	Г 2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.4	7.8	7.3	7.7			7.6	6.5	6.5	7.0			7.5	7.3	7.2	7.5			7.6	8.6	8.1	8.8			9.7	7.8	7.9	7.3		
Floodprone Width (ft)	50.0	50.0	50.0	50.0			50.0	50.0	50.0	50.0									50.0	50.0	50.0	50.0			50.0	50.0	50.0	50.0		
BF Cross Sectional Area (ft2)	3.2	3.8	3.4	3.1			2.7	2.6	2.0	2.9			7.2	6.3	5.9	6.1			3.6	3.4	3.4	3.4			5.5	5.6	5.6	5.6		
BF Mean Depth (ft)	0.4	0.5	0.5	0.4			0.4	0.4	0.3	0.4			1.0	0.9	0.8	0.8			0.5	0.4	0.4	0.4			0.6	0.7	0.7	0.8		
BF Max Depth (ft)	0.7	0.9	0.8	0.8			0.5	0.7	0.6	0.6			1.4	1.3	1.3	1.3			0.7	0.8	0.7	0.7			1.0	1.4	1.5	1.3		
Width/Depth Ratio	17.1	16.0	15.7	19.1			21.4	16.3	21.1	16.9									16.0	21.8	19.3	22.8			17.1	10.9	11.1	9.5		
Entrenchment Ratio	6.8	6.4	6.8	6.5			6.6	7.7	7.7	7.1									6.6	5.8	6.2	5.7			5.2	6.4	6.3	6.8		
Bank Height Ratio	1.0	1.29	1.14	1.14			1.0	1.40	1.20	1.20									1.0	1.0	1.0	1.0			1.0	1.40	1.50	1.30		
Wetted Perimeter (ft)	7.6	8.1	7.6	7.9			7.7	6.9	7.3	7.2			8.3	8.1	8.0	8.3			7.9	8.9	8.4	9.0			10.1	8.4	9.5	8.2		
Hydraulic Radius (ft)	0.4	0.5	0.4	0.4			0.3	0.4	0.3	0.4			0.9	0.8	0.7	0.7			0.4	0.4	0.4	0.4			0.5	0.7	0.6	0.7		

Parameter		XS	6 Riffle	e (UT 2	2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	5.9	5.9	6.3	5.3		
Floodprone Width (ft)	50	50	50	50		
BF Cross Sectional Area (ft2)	2.3	2.7	2.2	2		
BF Mean Depth (ft)	0.4	0.5	0.3	0.4		
BF Max Depth (ft)	0.6	0.8	0.6	0.7		
Width/Depth Ratio	15.1	12.9	18.0	14.0		
Entrenchment Ratio	8.5	8.5	7.9	9.4		
Bank Height Ratio	1	1.33	1	1.17		
Wetted Perimeter (ft)	6.1	6.3	6.7	5.5		
Hydraulic Radius (ft)	0.4	0.4	0.3	0.4		

Table 12J. Morphology and Hydraulic Monitoring SummaryLamm UT-2 - Stream and Wetland Restoration Site

Parameter	M	Y-00 (2	015)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-04 (2	018)	MY	-05 (2	019)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	5	26	12															
Riffle Slope (ft/ft)	0.84%	4.64%	2.94%															
Pool Length (ft)	4	14	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		387			387			387			387							
Channel Length (ft)		464			464			464			464							
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0301																
BF Slope (ft/ft)																		
D50		16.3			16			45.6			43.9							
D84		110			93			109			103							
Rosgen Classification		C/E 3/4	ļ		C/E 3/4	ļ.		C/E 3/4	1		C/E 3/4	t -						

Table 12K. Morphology and Hydraulic Monitoring SummaryLamm UT-3 - Stream and Wetland Restoration Site

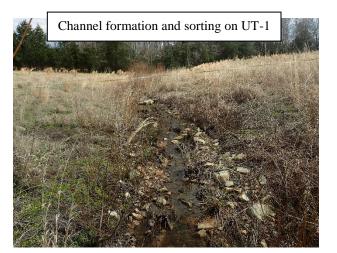
Parameter		XS	1 Riffle	UT	3)			XS	2 Poo	ol (U	Г З)			XS	3 Riff	le (U	T 3)			XS	4 Poo	ol (UT	ſ 3)			XS	5 Riff	le (Ul	Ր 3)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	· MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.3	7.1	7.2	7.2			9.7	11.6	10.7	10.2			7.6	7.6	7.1	6.5			10.4	11.2	10.8	11.1			6.9	6.0	6.0	5.8		
Floodprone Width (ft)	50.0	50.0	50.0	50.0									50.0	50.0	50.0	50.0									50.0	50.0	50.0	50.0		
BF Cross Sectional Area (ft2)	2.4	2.4	2.6	2.6			5.9	5.6	5.5	4.8			2.5	2.9	2.6	2.0			7.5	7.1	6.6	6.2			3.1	4.2	4.1	4.0		
BF Mean Depth (ft)	0.3	0.3	0.4	0.4			0.6	0.5	0.5	0.5			0.3	0.4	0.4	0.3			0.7	0.6	0.6	0.6			0.4	0.7	0.7	0.7		
BF Max Depth (ft)	0.5	0.7	0.7	0.5			1.0	1.0	1.1	0.9			0.5	0.8	0.7	0.6			1.2	1.3	1.4	1.4			0.8	1.2	1.2	1.1		
Width/Depth Ratio	22.2	21.0	19.9	19.9									23.1	19.9	19.4	21.1									15.4	8.6	8.8	8.4		
Entrenchment Ratio	6.8	7.0	6.9	6.9									6.6	6.6	7.0	7.7									7.2	8.3	8.3	8.6		
Bank Height Ratio	1.0	1.0	1.0	1.0									1.0	1.60	1.40	1.20									1.0	1.50	1.50	1.38		
Wetted Perimeter (ft)	7.4	7.3	7.4	7.5			10.0	11.9	11.2	10.5			7.7	7.8	7.6	7.4			10.8	12.1	11.6	11.8			7.1	6.9	7.6	6.8		
Hydraulic Radius (ft)	0.3	0.3	0.4	0.3			0.6	0.5	0.5	0.5			0.3	0.4	0.3	0.3			0.7	0.6	0.6	0.5			0.4	0.6	0.5	0.6		
Parameter		XS	6 Riffle	UT	3)			XS	7 Poo	ol (U'	Г 3)			XS	8 Riff	le (U	T 3)			XS	9 Riff	le (U	T 3)			XS	10 Po	ol (U]	ſ 3)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	6.8	6.3	6.6			6.8	6.7	7.0	6.9			6.3	6.0	5.9	7.0			7.9	7.3	7.0	4.1			7.8	8.4	6.8	5.7		
Floodprone Width (ft)	50.0	50.0	50.0	50.0									50.0	50.0	50.0	50.0			50.0	50.0	50.0	50.0							1	

riboupione width (it)	50.0	50.0	50.0	50.0							50.0	50.0	50.0	50.0		50.0	50.0	50.0	50.0						
BF Cross Sectional Area (ft2)	2.8	3.0	2.6	2.3		7.1	8.7	8.9	9.9		2.0	2.3	2.3	2.5		2.5	2.6	3.1	1.8		5.0	3.7	3.3	3.4	
BF Mean Depth (ft)	0.4	0.4	0.4	0.3		1.0	1.3	1.3	1.4		0.3	0.4	0.4	0.4		0.3	0.4	0.4	0.4		0.6	0.4	0.5	0.6	
BF Max Depth (ft)	0.6	0.8	0.7	0.5		1.7	2.1	2.4	2.3		0.4	0.6	0.7	0.6		0.5	0.7	0.9	0.8		1.0	0.9	0.9	1.0	
Width/Depth Ratio	17.0	15.4	15.3	18.9							19.8	15.7	15.1	19.6		25.0	20.5	15.8	9.3						
Entrenchment Ratio	7.2	7.4	7.9	7.6							7.9	8.3	8.5	7.1		6.3	6.8	7.1	12.2						
Bank Height Ratio	1.0	1.0	1.0	1.0							1.0	1.50	1.75	1.50		1.0	1.40	1.80	1.60						
Wetted Perimeter (ft)	7.2	7.1	6.7	6.8		7.8	8.4	9.4	8.8		6.4	6.2	6.5	7.4		8.1	7.5	7.6	4.4		8.3	8.7	7.2	6.2	
Hydraulic Radius (ft)	0.4	0.4	0.4	0.3		0.9	1.0	0.9	1.1		0.3	0.4	0.4	0.3		0.3	0.3	0.4	0.4		0.6	0.4	0.5	0.5	

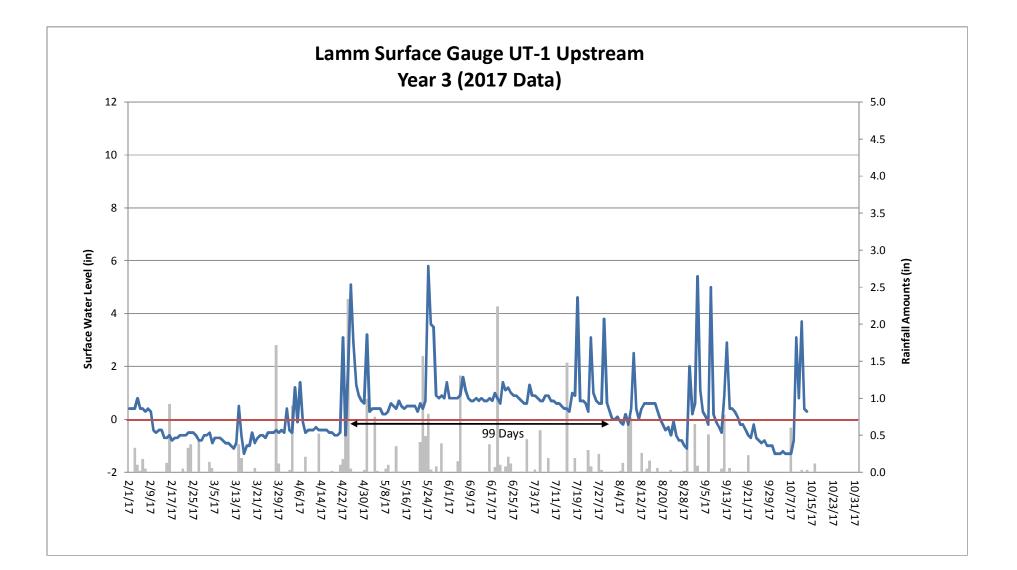
Parameter	XS 11 Riffle (UT 3)			XS 12 Riffle (UT 3)				XS 13 Pool (UT 3)				XS 14 Riffle (UT 3)												
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.3	7.2	7.0	4.6			7.9	6.6	6.7	4.2			7.0	5.5	5.4	5.1			8.6	8.7	8.0	8.3		
Floodprone Width (ft)	50.0	50.0	50.0	50.0			50.0	50.0	50.0	50.0									50.0	50.0	50.0	50.0		
BF Cross Sectional Area (ft2)	2.5	3.8	3.7	2.3			2.6	3.0	2.9	2.7			4.1	3.4	2.9	2.6			2.8	3.4	3.4	3.0		
BF Mean Depth (ft)	0.4	0.5	0.5	0.5			0.3	0.5	0.4	0.6			0.6	0.6	0.5	0.5			0.3	0.4	0.4	0.4		
BF Max Depth (ft)	0.6	1.2	1.1	0.9			0.6	0.9	1.1	1.2			1.2	0.9	0.8	0.8			0.7	0.9	0.9	0.8		
Width/Depth Ratio	15.9	13.6	13.2	9.2			24.0	14.5	15.5	6.5									26.4	22.3	18.8	23.0		
Entrenchment Ratio	7.9	6.9	7.1	10.9			6.3	7.6	7.5	11.9									5.8	5.7	6.3	6.0		
Bank Height Ratio	1.0	2.00	1.83	1.50			1.0	1.50	1.83	2.00									1.0	1.29	1.29	1.14		
Wetted Perimeter (ft)	6.5	7.7	7.7	5.2			8.1	6.9	7.6	5.1			8.2	5.9	5.8	5.7			8.8	9.3	8.3	8.5		
Hydraulic Radius (ft)	0.4	0.5	0.5	0.4			0.3	0.4	0.4	0.5			0.5	0.6	0.5	0.5			0.3	0.4	0.4	0.4		

Table 12L. Morphology and Hydraulic Monitoring Summary

Parameter	MY	7-00 (20	15)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-04 (2	018)	18) MY-05 (201		
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	6	66	21															
Riffle Slope (ft/ft)	0.82%	6.50%	3.13%															
Pool Length (ft)	4	14	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		846			846			846			846							
Channel Length (ft)		1,015			1,015		1,015			1,015								
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0319																
BF Slope (ft/ft)	BF Slope (ft/ft)																	
D50		8.7			17.4			6.9			12.2							
D84		87			95			29			54							
Rosgen Classification		C/E 3/4			C/E 3/4	1		C/E 3/4	1		C/E 3/4	1						


APPENDIX E

HYDROLOGY DATA


Tables 13A-B. UT1 and UT3 Channel EvidenceStream Gauge GraphsTable 14. Verification of Bankfull EventsGroundwater Gauge GraphsTable 15. Groundwater Hydrology Data

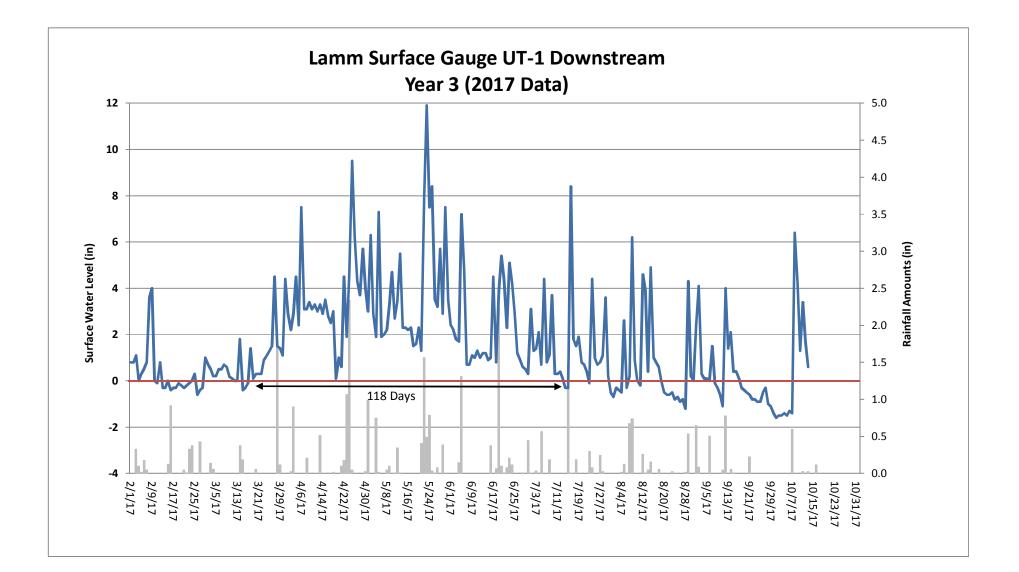
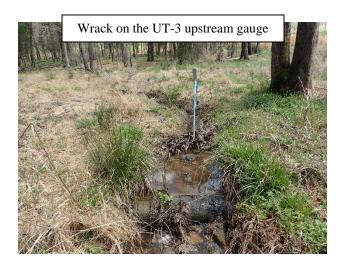
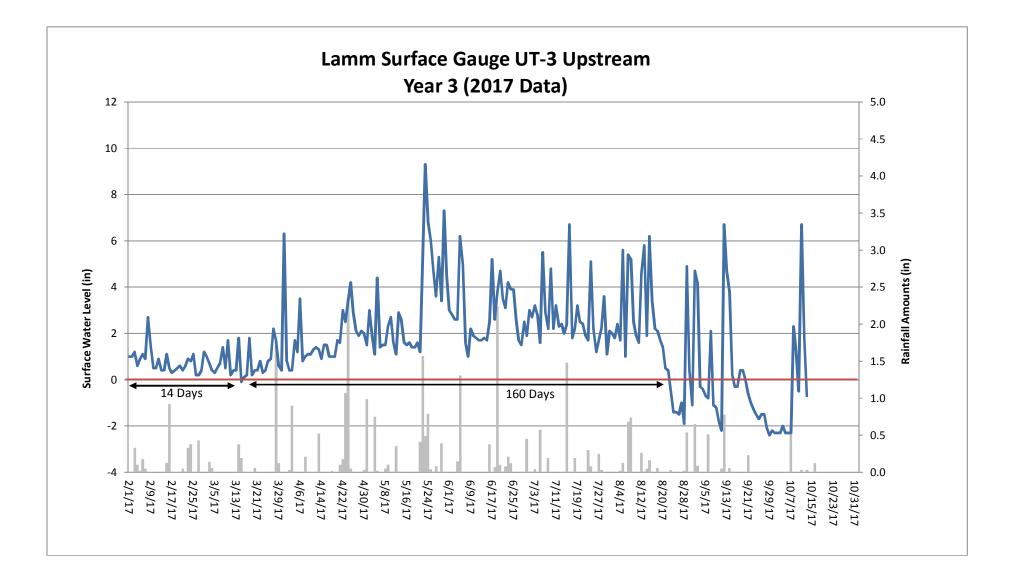

UT1 Channel Evidence	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)
Max consecutive days channel flow	64	101	118
Presence of litter and debris (wracking)	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No
Other:			

 Table 13A. UT1 Channel Evidence


2017 Year 3 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC



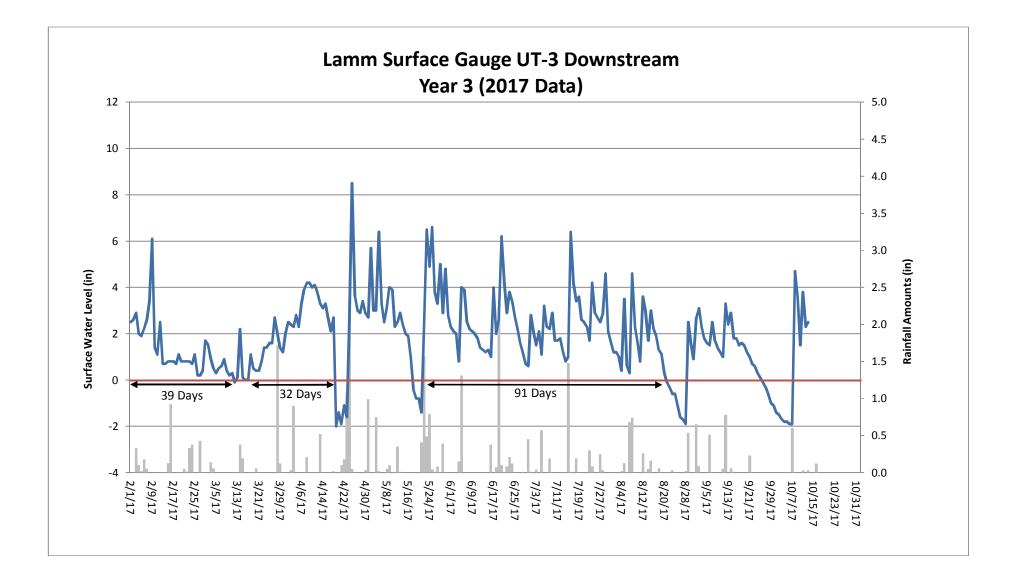
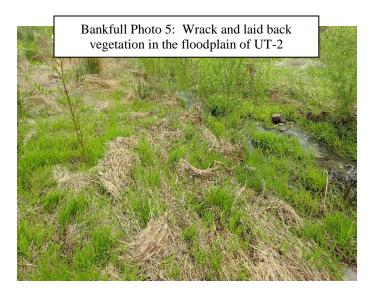

UT3 Channel Evidence	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)
Max consecutive days channel flow	51	100	160
Presence of litter and debris (wracking)	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	No	No
Other:			

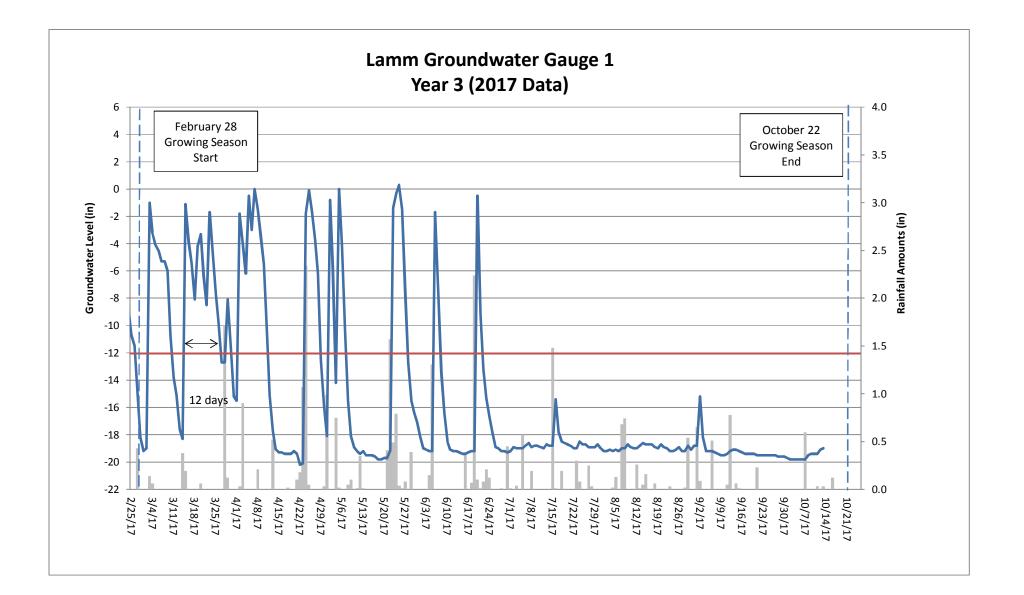
 Table 13B. UT3 Channel Evidence

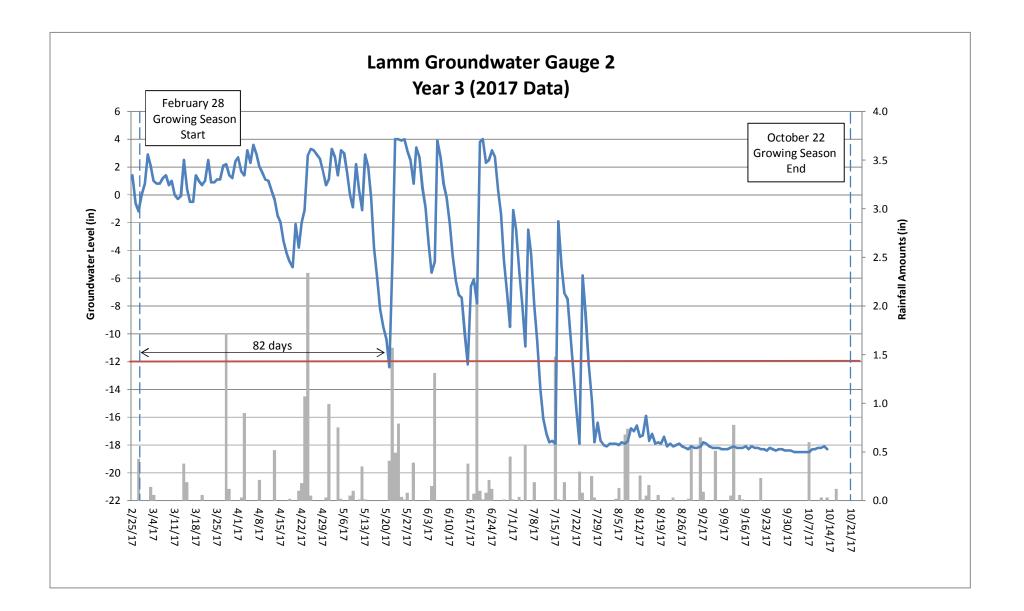
2017 Year 3 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC

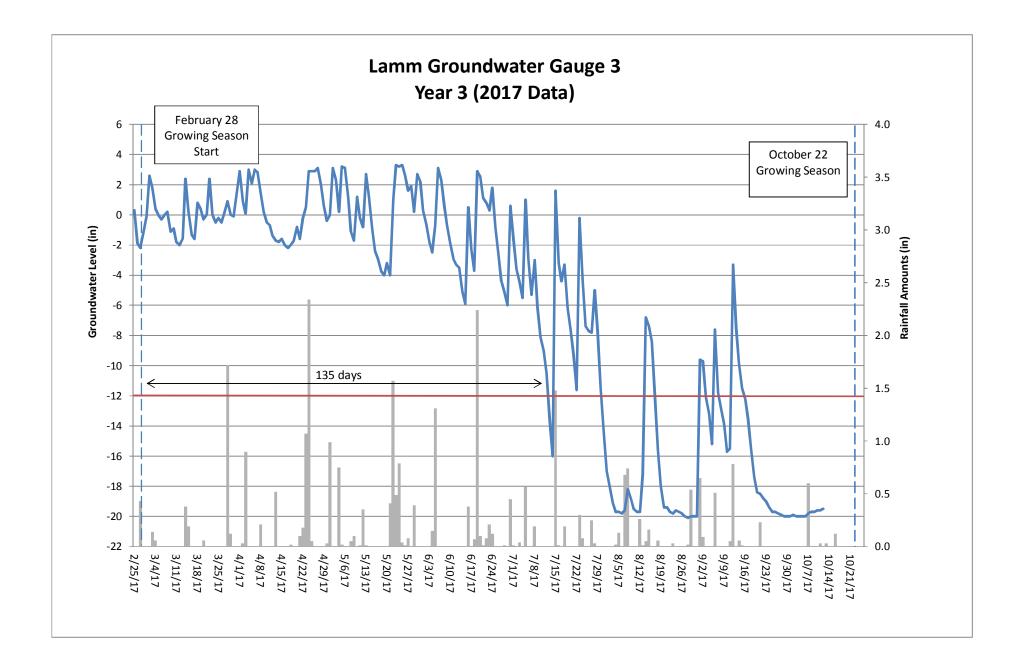
Date of Data Collection	Date of Occurrence	Method	Photo (if available)		
May 27, 2015	April 30, 2015	1.66 inches of rain documented in one day at an onsite rain gauge.			
June 28, 2015	June 19, 2015	Wrack, sediment, and laid-back vegetation observed in the floodplain after 2.28 inches of rain was recorded in one day at an onsite rain gauge.	1-3		
October 10, 2016	October 8, 2016	A trail camera installed on the right bank of UT3 documented a bankfull flow after 3.41 inches of rain was recorded in one day at an onsite rain gauge.	4		
April 28, 2017	April 24, 2017	Wrack and laid-back vegetation observed in the floodplain after 3.41 inches of rain was recorded over two days at an onsite rain gauge.	5		
July 19, 2017	2 24 inches of rain documented in one day at an onsite				

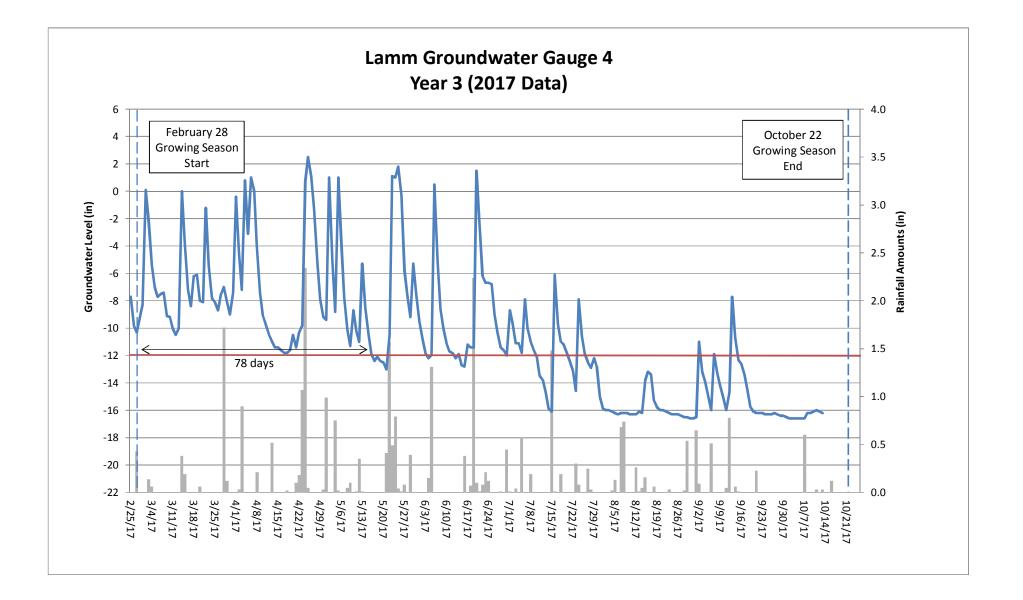
 Table 14. Verification of Bankfull Events

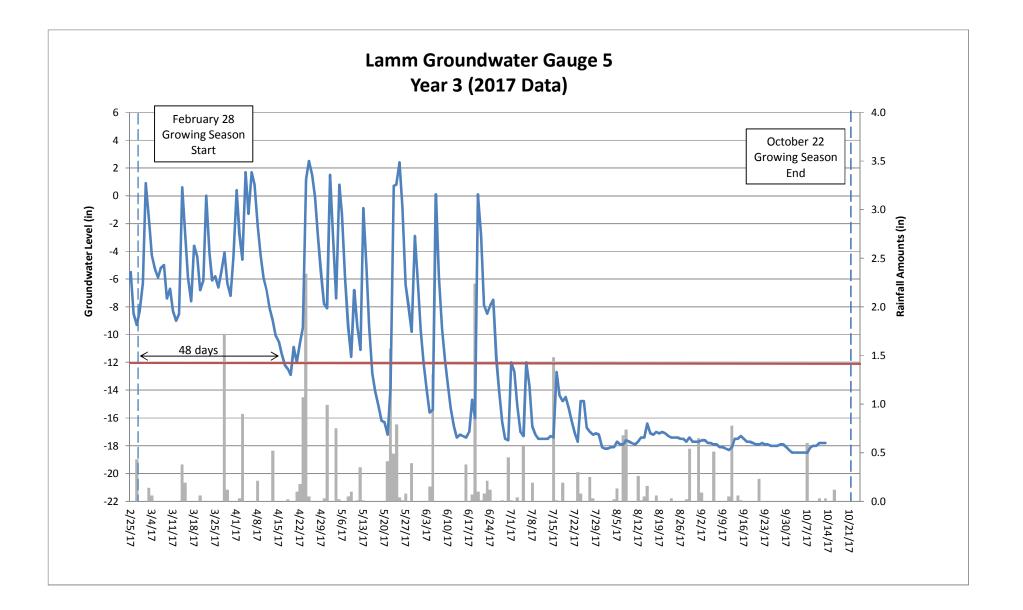

Bankfull Photo 1: Wrack and sediment in the floodplain of the mainstem

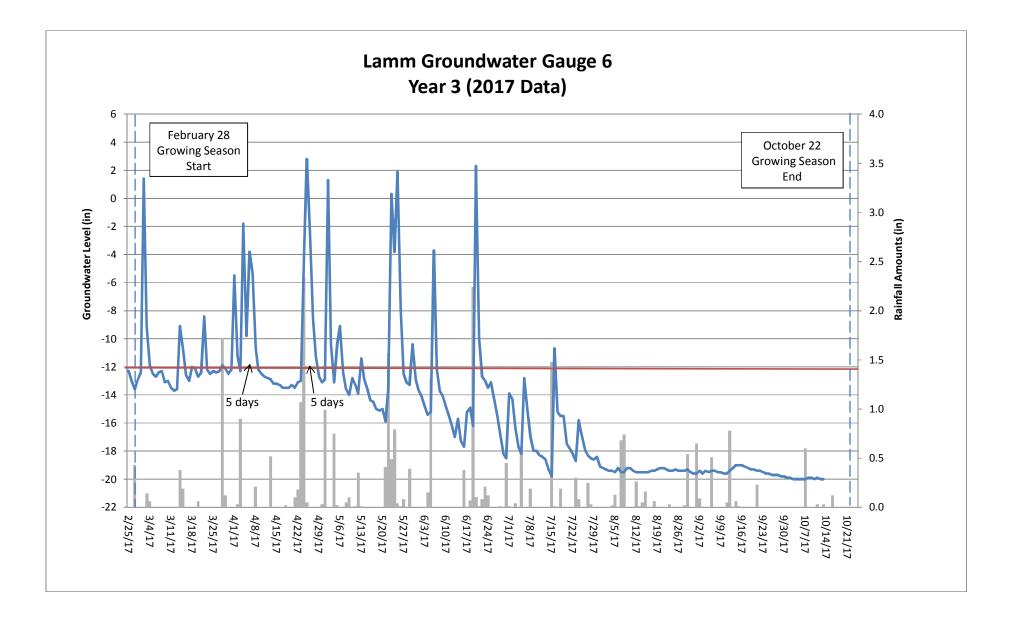

	Success Cr	iteria Achieved/Ma	x Consecutive Days	During Gro	wing Seaso	n (Percenta	ge)
Gauge	Year 1 (2015) February 1 Growing Season Start	Year 2 (2016) March 30 Growing Season Start	Year 3 (2017) February 28 Growing Season Start	Year 4 (2018)	Year 5 (2019)	Year 6 (2020)	Year 7 (2021)
1	No*/10 days (3.8 percent)	Yes/75 days (36 percent)	No/12 days (5.1 percent)				
2	Yes/35 days (13.3 percent)	Yes/122 days (59 percent)	Yes/82 days (35 percent)				
3	No*/14 days (5.3 percent)	Yes/48 days (23 percent)	Yes/135 days (57 percent)				
4	No*/14 days (5.3 percent)	Yes/100 days (48 percent)	Yes/78 days (33 percent)				
5	Yes/32 days (12.1 percent)	Yes/75 days (36 percent)	Yes/48 days (20 percent)				
6	No*/9 days (3.4 percent)	No/7 days (3.4 percent)	No/5 days (2.1 percent)				
7**		Yes/116 days (56 percent)	Yes/153 days (65 percent)				
8**		Yes/206 days (100 percent)	Yes/211 days (89 percent)				
9**		Yes/54 days (26 percent)	No [/] /12 days (5.1 percent)				

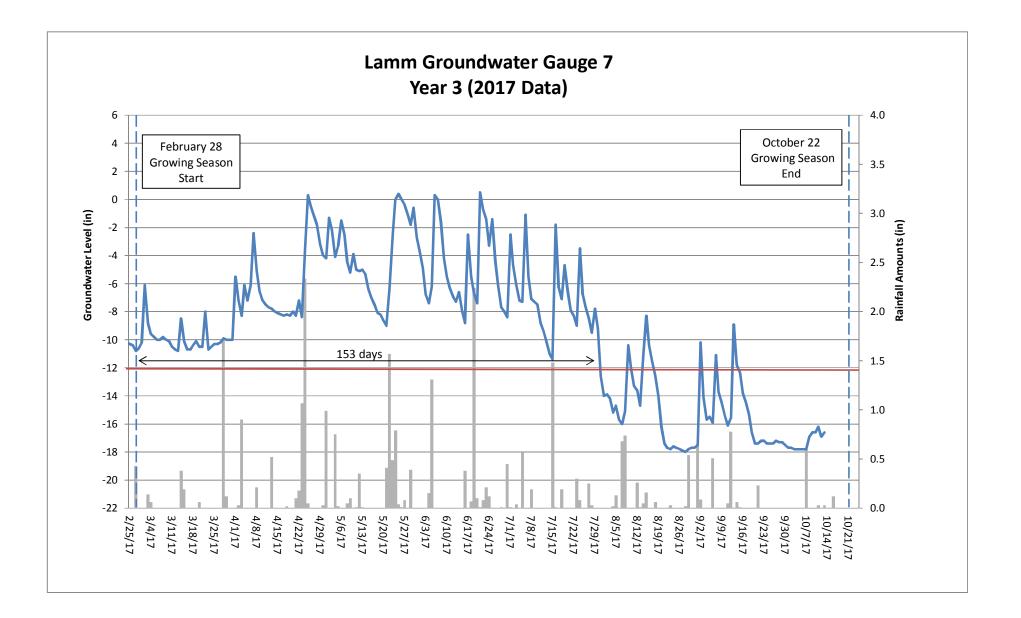

 Table 15. Groundwater Hydrology Data

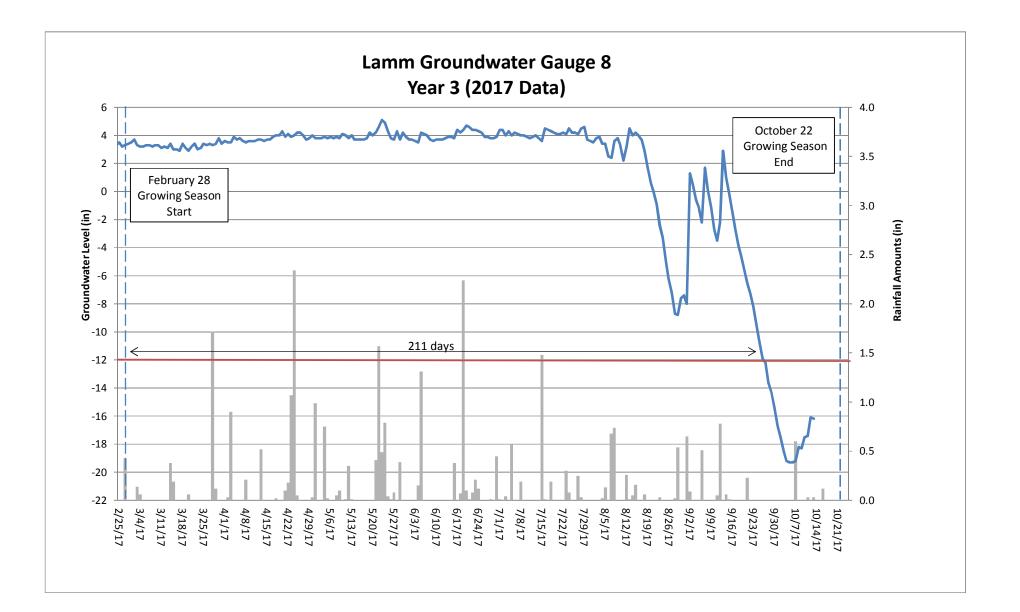

*Due to Site construction activities, groundwater gauges were not installed until April 8, 2015. It is expected that all gauges would meet success criteria at the beginning of the growing season.

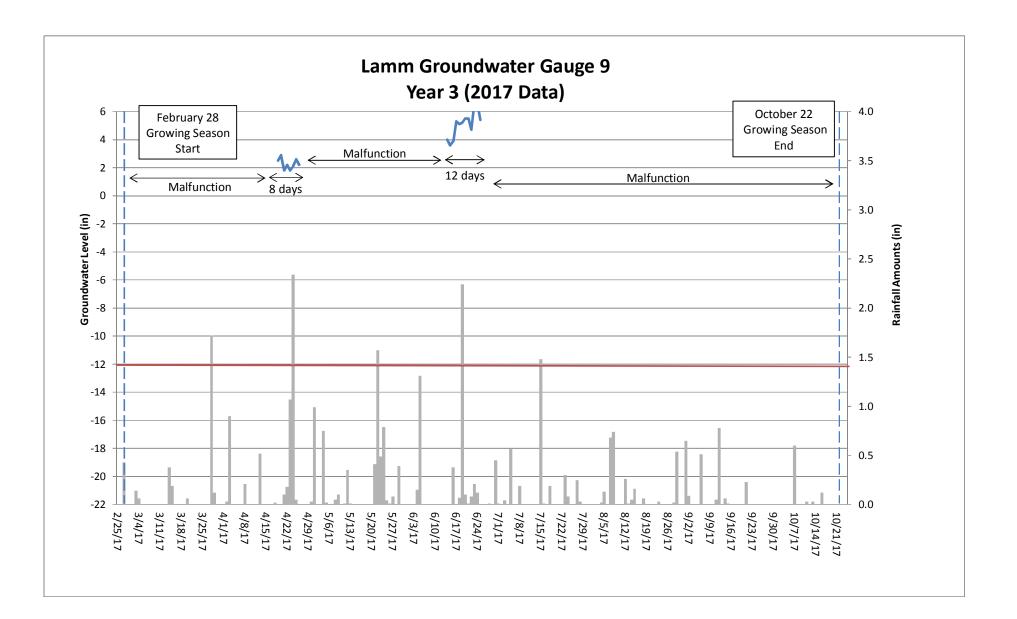

**These gauges were installed on March 8, 2016 to show wetland establishment within the old pond bed.


[^]This gauge malfunctioned through the majority of the growing season due to continuous inundation. It is expected that this gauge would have met success criteria had it functioned properly.









APPENDIX F BENTHIC DATA

Results Habitat Assessment Data Sheets AXIOM ENVIRONMENTAL, LAMM PROJECT, BENTHIC MACROINVERTEBRATES COLLECTED FROM ALAMANCE COUNTY, NC, 6/13/17.

PAI ID NO			50154	50155	50156
STATION			Main	UT-1	UT-2
DATE			6/13/2017		6/13/2017
			-, -, -		
	TOLERANCE	FUNCTIONAL			
SPECIES	VALUE	FEEDING GROUP			
PLATYHELMINTHES					
Turbellaria					
Tricladida					
Planariidae					
Girardia (Dugesia) tigrina	7.1	Р	1		1
MOLLUSCA					
Gastropoda					
Basommatophora					
Physidae					
Physella sp.	8.7	CG		1	1
ANNELIDA				_	_
Oligochaeta		CG			
Tubificida					
Naididae					1
Tubificinae w.h.c.		CG			1
Tubificinae w.o.h.c.		CG			1
Pristininae					-
Pristina leidyi	7.7	CG			1
Lumbriculida					-
Lumbriculidae		CG			1
ARTHROPODA					-
Crustacea					
Isopoda					
Asellidae		SH			
Caecidotea sp.	8.4	CG		1	
Amphipoda	01-1	CG		-	
Crangonyctidae					
Crangonyx sp.	7.2	CG	3		4
Decapoda					
Cambaridae					
Procambarus sp.	9.3	SH	1		
Insecta			-		
Ephemeroptera					
Baetidae		CG			
Neocloeon triangulifer	7.3	CG		1	
Caenidae		CG		-	
Caenis sp.	6.8	CG	6	1	3
Odonata	0.0			-	
Aeshnidae		Р	+		

AXIOM ENVIRONMENTAL, LAMM PROJECT, BENTHIC MACROINVERTEBRATES COLLECTED FROM ALAMANCE COUNTY, NC, 6/13/17.

PAI ID NO			50154	50155	50156
STATION			Main	UT-1	UT-2
DATE			6/13/2017	6/13/2017	6/13/2017
	TOLERANCE	FUNCTIONAL			
SPECIES	VALUE	FEEDING GROUP			
Aeshna umbrosa		Р	1	2	1
Coenagrionidae		Р			
Ischnura sp.	9.5		4	5	1
Libellulidae		Р			
Libellula sp.	9.4	Р	1	5	2
Hemiptera					
Notonectidae					
Notonecta sp.		Р	1		
Megaloptera					
Sialidae		Р			
Sialis sp.	7	P	1		
Trichoptera			_		
Hydropsychidae		FC			
Diplectrona modesta	2.3	FC			1
Coleoptera					
Dytiscidae		Р			
Celina sp.		Р		2	
, Copelatus sp.	10		1		
Laccophilus fasciatus rufus	9.8	Р	1		
Neoporus sp.	5		1		1
Haliplidae					
Peltodytes sp.	8.4	SH			1
Hydrophilidae		Р			
Tropisternus sp.	9.3	Р		1	1
Diptera					
Chironomidae					
Apsectrotanypus johnsoni					1
Chironomus sp.	9.3	CG		2	
Conchapelopia sp.	8.4	Р		1	2
Corynoneura sp.	5.7	CG		1	
Dicrotendipes neomodestus	7.9	CG			2
Dicrotendipes sp.	7.2	CG	2		
Polypedilum illinoense gp.	8.7	SH	2	1	
Tanytarsus sp.	6.6	FC			2
Zavrelimyia sp.	8.6	Р	2	1	
Culicidae		FC	1	1	
Anopheles sp.	8.6	FC	4	3	3
Dixidae		CG			
Dixella sp.	4.9	CG		1	1

AXIOM ENVIRONMENTAL, LAMM PROJECT, BENTHIC MACROINVERTEBRATES COLLECTED FROM ALAMANCE COUNTY, NC, 6/13/17.

PAI ID NO			50154	50155	50156
STATION			Main	UT-1	UT-2
DATE			6/13/2017	6/13/2017	6/13/2017
SPECIES	TOLERANCE	FUNCTIONAL			
SPECIES	VALUE	FEEDING GROUP			
TOTAL NO. OF ORGANISMS			32	29	33
TOTAL NO. OF TAXA			16	16	22
EPT INDEX			1	2	2
BIOTIC INDEX Assigned values			8.11	8.62	7.41

3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams Aycock UT-1

TOTAL SCORE

Biological Assessment Unit, DWQ

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream UT to Travis Creek Location/road: Off Gibsonville (Road Name)County Alamance

County
Date 0/15/17 CC# 03030002 Basin Cape Fear Subbasin 03-06-02
Observer(s) Revenue Type of Study: Sight Fish Benthos Basinwide Special Study (Describe)
Latitude <u>3C,129077</u> Longitude <u>-79.521127</u> Ecoregion: \Box MT \not P \Box Slate Belt \Box Triassic Basin
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 20 %Active Pasture % Active Crops %Fallow Fields %Commercial %Industrial 20 %Active Pasture % Active Crops
Watershed land use : р Forest 🛱 Agriculture 🗆 Urban 🗖 Animal operations upstream
Width: (meters) Stream 0.5 Channel (at top of bank) 1.5 Stream Depth: (m) Avg 0.1 Max 0.3 Width variable \Box Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 0.5
Bank Angle:
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
Weather Conditions: hot summer Photos: DN DY Digital 35mm
Remarks: <u>Respiration Project</u> ; fish (small minipous) abundant; water beetles, <u>crantish</u> , water finiters, algae present; abundance of leggs on under side of vocks; abundance of sharls

B. channel natural, infrequent bends (channelization could be old)
D. more extensive channelization, >40% of stream disrupted
E. no bends, completely channelized or rip rapped or gabioned, etc
E. no bends, completely channelized or rip rapped or gabioned, etc
\Box Evidence of dredging \Box Evidence of despagging=no large woody debris in stream. \Box Banks of uniform shape/height
L'idence of declaging Elvidence of deshagging-no large woody deons in stream Elbanks of dimonit shape neight
Remarks Restoration reach Subtotal 5

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

<u>C</u> Rocks <u>A</u> Macrophytes <u>R</u> Sticks and leafpac	ks	Snags and logs $\underline{\mathcal{C}}$	_Undercut ban	iks or root	mats
AMOUNT OF REACH FAVO	RABLE	FOR COLONIZA	TION OR CO	VER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
l type present	17	13	9	5	
No types present	0				
□ No woody vegetation in riparian zone Remarks_					Subtotal 6
III. Bottom Substrate (silt, sand, detritus, gravel, cobbl riffle for embeddedness, and use rocks from all parts of rif					but only look at
A. substrate with good mix of gravel, cobble a					<u>Score</u>
1 embeddedness <20% (very little sand	usually	only behind large be	ulders)		15

1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	Ц	
3. embeddedness 40-80%	6	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand	3	
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	
Remarks	Subtotal_	9

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	\bigcirc
a. variety of pool sizes	(10)
b. pools about the same size (indicates pools filling in)	
2. Pools Infrequent (<30% of the 200m area surveyed)	5
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	0
/	Subtotal
□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk □ Silt bottom □ Some pools over	wader depth
Remarks	

Page Total 37

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent	Riffles Infrequent
Score	Score
A, well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16	12
B. riffle as wide as stream but riffle length is not 2X stream width	7
C. riffle not as wide as stream and riffle length is not 2X stream width 10	3
D. riffles absent	
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	Subtotal 10
MI Deal Cock/Record Venetation	
VI. Bank Stability and Vegetation FACE UPSTREAM Left E	Bank Rt. Bank
	Score Score
A. Banks stable	$\hat{\mathbf{D}}$
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. 7	
B. Erosion areas present	
1. diverse trees, shrubs, grass; plants healthy with good root systems	
2. few trees or small trees and shrubs; vegetation appears generally healthy	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident0	
	Total 14

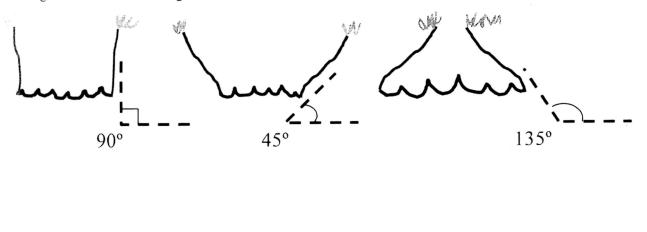
Remarks

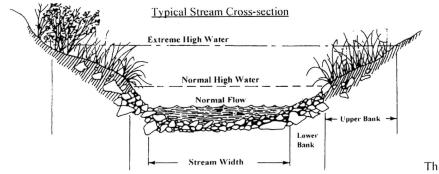
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	2
D. Stream with minimal canopy - full sun in all but a few areas	(2)
E. No canopy and no shading	0
Remarks leave 2 post vestoration.	Subtotal 2

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.


FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Uveds/old field Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	4)	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0
Remarks tean 2 post vistor at on	Т	otal 🛛


Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Page Total 40

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

This side is 45° bank angle.

¢. . . .

Site Sketch:

Other comments:

3/06 Revision 6

Aycock - UT-Z

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ

TOTAL SCORE 79

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.

Stream UT to Tavis Creek Location/road: Of Gibsonville Ossippe (Road Name)County Alamance
Date 6/15/11 CC# 030 30007 Basin Cape Fear Subbasin 03-06-07 Observer(s) Furtions Type of Study: Fish ABenthos Basinwide Special Study (Describe)
Observer(s) PUTKING Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude <u>36.128128</u> Longitude <u>-79.521813</u> Ecoregion: \Box MT 💢 P \Box Slate Belt \Box Triassic Basin
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 10 %Forest %Residential 90 %Active Pasture % Active Crops %Fallow Fields % Commercial %Industrial %Other - Describe:
Watershed land use : 🛛 🖾 Agriculture 🗆 Urban 🗖 Animal operations upstream
Width: (meters) Stream 0.3 Channel (at top of bank) S Stream Depth: (m) $Avg_{0.025}^{0.025} Max_{0.05}^{0.05}$ Width variable \Box Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) $0.25-0.5$
Bank Angle : $\frac{145}{100}$ or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) \Box Channelized Ditch
□Deeply incised-steep, straight banks □Both banks undercut at bend □Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures □Exposed bedrock □ Excessive periphyton growth □Heavy filamentous algae growth □Green tinge □Sewage smell Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □Sediment/grade-control structure □Berm/levee Flow conditions: □High □Normal □Low
Turbidity: 🛛 Clear 🗆 Slightly Turbid 🛛 Turbid 🖓 Tannic 🖉 Milky 🖓 Colored (from dyes)
Good potential for Wetlands Restoration Project?? DYES DNO Details Withation Ste
Channel Flow Status
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
E. Very little water in channel, mostly present as standing pools
Weather Conditions: hot Survey Photos: DN DY Digital D35mm
Remarks: aquatic vegetation in channel is abundant; abundance of tadpoks;

42

I. Channel Modification	Seore
A. channel natural, frequent bends	(5)
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/h	eight _
RemarksSub	ototal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

Rocks A_Macrophytes R Sticks and leafpack	usS	Snags and logs <u>A</u>		ks or root	mats
AMOUNT OF REACH FAVO	RABLE	FOR COLONIZA	TION OR COV	/ER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	$(2\dot{0})$	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				00
□ No woody vegetation in riparian zone Remarks_					Subtotal 20

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Scor	<u>e</u>
1. embeddedness <20% (very little sand, usually only behind large boulders)	15	
2. embeddedness 20-40%	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	Ц	
3. embeddedness 40-80%	(6)	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand	3	
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	10
Remarks	Subtotal_	Ø

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	10
b. pools about the same size (indicates pools filling in)	(8)
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	0 0
/ Sub	total ()
	1 1

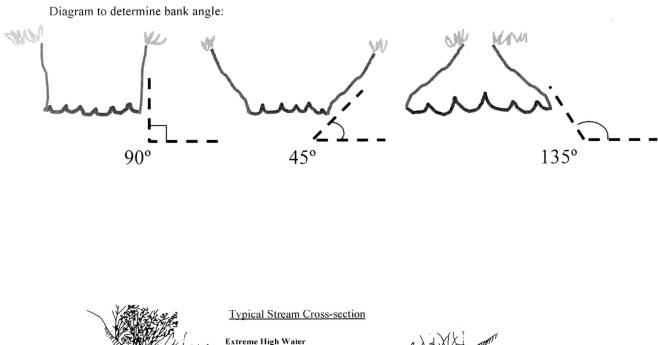
□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk ☑ Silt bottom □ Some pools over wader depth Remarks______

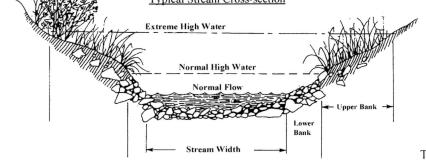
V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles I	Frequent	Riffles I	nfrequent
	Score	Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	(16)	12	
B. riffle as wide as stream but riffle length is not 2X stream width	14	7	
C. riffle not as wide as stream and riffle length is not 2X stream width	10	3	
D. riffles absent.	0		110
Channel Slope: ŹTypical for area □Steep=fast flow □Low=like a coastal stream		Sub	total <u>I</u>
VI. Bank Stability and Vegetation			
EACE LIDSTDEAM	T.	oft Donk	Dt Donk

FACE UPSTREAM	Left Bank	Rt. Bank
	Score	Score
A. Banks stable	6	
1. little evidence of erosion or bank failure(except outside of bends), little potential for en	osion.	(7)
B. Erosion areas present		_
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy	5	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high	flow 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0	0 1,1
-		Total
Remarks		,

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.


	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	2
D. Stream with minimal canopy - full sun in all but a few areas	6)
E. No canopy and no shading	$\widecheck{0}$
Remarks leav 2 post construction	Subtotal 2


VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

Dominant vegetation: □ Trees □ Shrubs □ Grasses □ Weeds/old field □Exotics (kudzu, etc) Score Score A. Riparian zone intact (no breaks) 1. width > 18 meters
1. width > 18 meters
2. width 12-18 meters
3. width 6-12 meters
4. width < 6 meters
B. Riparian zone not intact (breaks)
1. breaks rare
a. width > 18 meters
b. width 12-18 meters
c. width 6-12 meters
d. width < 6 meters
2. breaks common
a. width > 18 meters
b. width 12-18 meters
c. width 6-12 meters
d width < 6 meters
Remarks leav 2 post vestoration Total 3
Page Total 40
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Supplement for Habitat Assessment Field Data Sheet

This side is 45° bank angle.

Site Sketch:

Other comments:	
	-

3/06 Revision 6

Aycock UT-4

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ

TOTAL SCORE 80

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics. Stream_UT + Travis Creek Location/road: Gibsonville Ossiff(Road Name_____)County_ Alumance

 Date
 6/15/17
 CC#
 03030007
 Basin
 Cape
 Fear
 Subbasin
 03-06-07

 Observer(s)
 Earling
 Type of Study:
 Fish
 Benthos
 Basinwide
 Special Study (Describe)

 Latitude 36, 12815 Longitude -71, 527165 Ecoregion: DMT X P D Slate Belt D Triassic Basin Water Quality: Temperature_____0C DO _____mg/l Conductivity (corr.) _____µS/cm pН Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.

 Visible Land Use:

 \overline{D}
 %Forest
 %Gesidential
 %Gesidential
 %Other - Describe:

 %Active Crops
 %Other - Describe:

 Width: (meters) Stream 1.5 Channel (at top of bank) 2 Stream Depth: (m) Avg 0.1 Max 0.2 Width variable Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) **Bank Angle**: 45 ° or \Box NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch Deeply incised-steep, straight banks DBoth banks undercut at bend Channel filled in with sediment □ Recent overbank deposits □Bar development □Buried structures Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee Flow conditions : High Normal Low Turbidity: Clear Slightly Turbid Turbid Turbid Milky Colored (from dyes) Good potential for Wetlands Restoration Project??
YES DNO Details **Channel Flow Status** Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed P B. Water fills >75% of available channel, or <25% of channel substrate is exposed..... C. Water fills 25-75% of available channel, many logs/snags exposed..... D. Root mats out of water..... E. Very little water in channel, mostly present as standing pools..... Weather Conditions: het, Survey Photos: DN DY Digital D35mm Remarks: abundance of eggs on under side of vocks; abundance of

I. Channel Modification	Score
A. channel natural, frequent bends	5)
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
□ Evidence of dredging □Evidence of desnagging=no large woody debris in stream □Banks of uniform shape/hei	
Remarks Subto	otal 5

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

AMOUNT OF REACH FAVO	RABLE F	OR COLONIZA	TION OR COV	/ER	
	>70%	40-70%	20-40%	<20%	
	Score	Seore	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				
lo woody vegetation in riparian zone Remarks					Subtotal

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Score
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	
1. embeddedness <20%	14
2. embeddedness 20-40%	(J)
3. embeddedness 40-80%	6
4. embeddedness >80%	2
C. substrate mostly gravel	
1. embeddedness <50%	8
2. embeddedness >50%	4
D. substrate homogeneous	
1. substrate nearly all bedrock	3
2. substrate nearly all sand	3
3. substrate nearly all detritus	2
4. substrate nearly all silt/ clay	1 11
Remarks	Subtotal 11

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	. 10
b. pools about the same size (indicates pools filling in)	. (8)
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	. 6
b. pools about the same size	. 4
B. Pools absent	. 0 0
	Subtotal O
🗆 Pool bottom boulder-cobble=hard 🗆 Bottom sandy-sink as you walk 🔟 Silt bottom 🗖 Some pools over v	vader depth
Remarks	

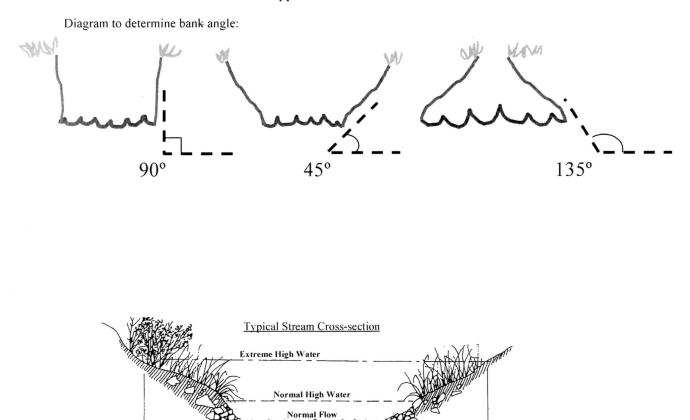
Page Total 40

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffle A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16 12 B. riffle as wide as stream but riffle length is not 2X stream width 14 7	s Infrequent <u>re</u>
C. riffle not as wide as stream and riffle length is not 2X stream width	
D. riffles absent	17
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream S	ubtotal 1 🍳
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Bank	Rt. Bank
Score	Score
A. Banks stable	\bigcirc
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. (7)	\mathcal{D}
B. Erosion areas present	
1. diverse trees , shrubs, grass; plants healthy with good root systems	6
2. few trees or small trees and shrubs; vegetation appears generally healthy	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0 .
	Total 14
Remarks	10m

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

, , , , , , , , , , , , , , , , , , ,	Score
A. Stream with good canopy with some breaks for light penetration	10
B. Stream with full canopy - breaks for light penetration absent	8
C. Stream with partial canopy - sunlight and shading are essentially equal	2
D. Stream with minimal canopy - full sun in all but a few areas	(2)
E. No canopy and no shading	Ō
Remarks Year 2 Post Restavation	Subtotal 2


VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

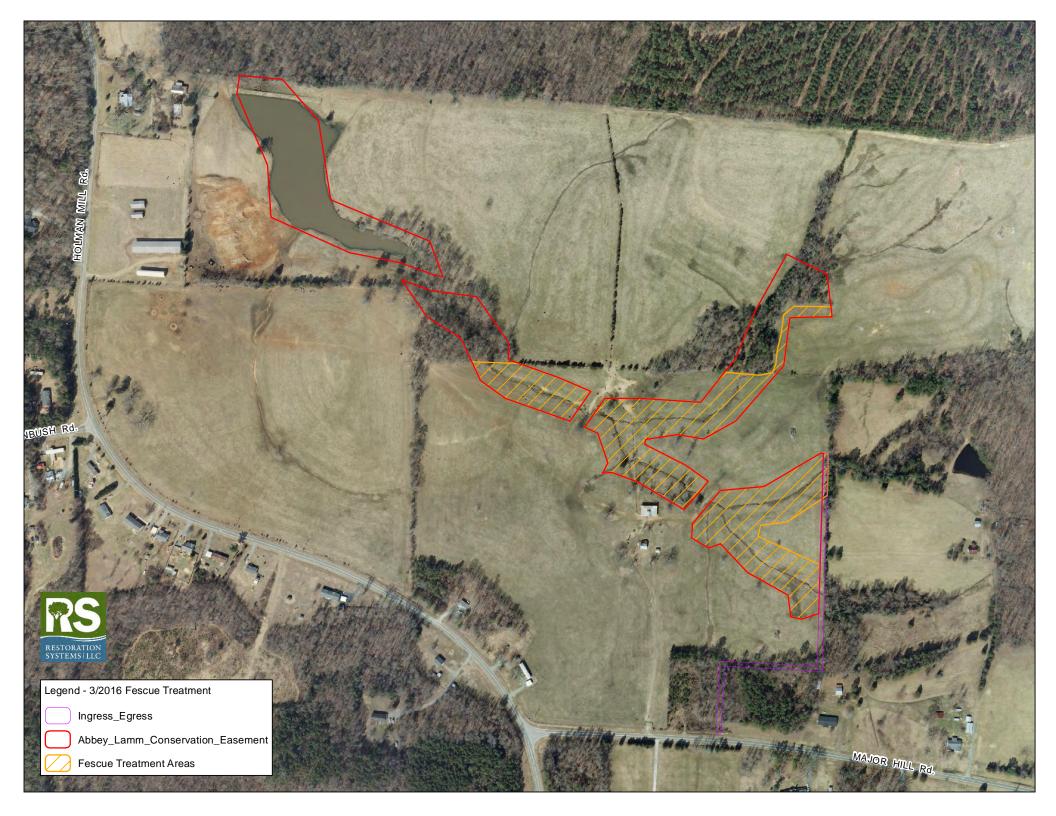
Dominant vegetation: \square Trees \square Shrubs \square Grasses \square Weeds/old field \square Exotics (kudzu, etc)ScoreScoreScoreA. Riparian zone intact (no breaks)1. width > 18 meters	FACE UPSTREAM Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐Exotics (kudzu, etc)	Lft. Bank	Rt. Bank
1. width > 18 meters. 5 5 2. width 12-18 meters. 3 3 3. width 6-12 meters. 2 2 4. width < 6 meters.		Score	Score
2. width 12-18 meters			
3. width 6-12 meters.334. width < 6 meters.		5	5
4. width < 6 meters.22B. Riparian zone not intact (breaks)1. breaks rare44a. width > 18 meters.44b. width 12-18 meters.33c. width 6-12 meters.22d. width < 6 meters.	2. width 12-18 meters	(4)	(4)
B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters		3	3
1. breaks rare44a. width > 18 meters	4. width < 6 meters	2	2
a. width > 18 meters	B. Riparian zone not intact (breaks)		
b. width 12-18 meters.33c. width 6-12 meters.22d. width < 6 meters.	1. breaks rare		
b. width 12-18 meters.33c. width 6-12 meters.22d. width < 6 meters.	a. width > 18 meters	4	4
c. width 6-12 meters		3	3
d. width < 6 meters.		2	2
2. breaks common a. width > 18 meters		1	1
b. width 12-18 meters22c. width 6-12 meters11d. width < 6 meters		-	-
b. width 12-18 meters22c. width 6-12 meters11d. width < 6 meters	a. width > 18 meters	3	3
c. width 6-12 meters.11d. width < 6 meters.		2	2
d. width < 6 meters		1	1
Remarks teal 2 Post Ristovation. Total 3		0	0 -
	Remarks Peak 2 Post PistoVation	т,	otal
Page Total 40			
		Page Tot	tal 40

Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Supplement for Habitat Assessment Field Data Sheet

Stream Width

This side is 45° bank angle.


Site Sketch:

Other comments:_____

Lower Bank

APPENDIX G MISCELLANEOUS

Figure-March 2016 Fescue Treatment Herbicide Application Forms Supplemental Photographs

CarSilv - 0456			
Client	Restoration Systems		
Project SIte	Abbey Lamm		
Date	08-28-2017		
Start Time	13:00	End Time	15:00
Only PAL for Site for This Day?	Yes	If NO, this is PAL # of ##	
Sky Cover	Partly Cloudy	Temp (F)	79
Wind Direction	Ν	Wind Speed	1-5 mph
Applicators	Joshua G Merritt (NC 026-33717 Grainger Coughtrey (NC 026-340 Sebastian Kimlinger (NC 026-34	612)	
Application Method	Foliar Spray (Backpack)		
Herbicide	Garlon® 3A (triclopyr)		
Herbicide Rate (%)	3	Total Concentrate	4 fl oz
Surfactant or Adjuvant (1)	Hel-fire®		
Surfactant/Adjudivant 1 Rate (%)	.5		
Other			
Other Rate/Amt			
Diluent	Water		
Total Solution	1 gallon		
Species Controlled	Privet spp. Tree-of-Heaven Multiflora Rose		
Area Description	Small Privet, multiflora, and Tree	of Heaven scarce on the site.	
Additional Comments			

CarSilv - 0399				
Client	Resto	ration Systems		
Project Site	Abbey	/ Lamm		
Date	04-10-	-2017		
Start Time	9:00		End Time	11:10
Only PAL for Site for This Day?		Yes	If NO, this is PAL # of ##	
Sky Cover	Clear		Temp (F)	70
Wind Direction	NE		Wind Speed	6-10 mph
Applicators		ger Coughtrey (NC 026-34 stian Kimlinger (NC 026-34		
Application Method	Basal	Bark		
Herbicide	Garlor	n® 4 (triclopyr)		
Herbicide Rate (%)	15		Total Concentrate	76 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other				
Other Rate/Amt				
Diluent	Diesel	fuel		
Total Solution	4 gallo	ons		
Species Controlled		spp. ora Rose an Olive		
Area Description	. 16001			

Additional Comments

CarSilv - 0342				
Client	Restor	ration Systems		
Project SIte	Abbey	Lamm		
Date	11-02-	-2016		
Start Time	12:40		End Time	14:10
Only PAL for Site for This Day?		Yes	If NO, this is PAL # of ##	
Sky Cover	Clear		Temp (F)	78
Wind Direction	SW		Wind Speed	1-5 mph
Applicators	Graing	a G Merritt (NC 026-33717 Jer Coughtrey (NC 026-34 tian Kimlinger (NC 026-34	612)	
Application Method	Basal	Bark		
Herbicide	Garlon	n® 4 (triclopyr)		
Herbicide Rate (%)	15		Total Concentrate	57 fl oz
	10		Total Concentrate	07 11 02
Surfactant or Adjuvant (1)	10		Total Concentrate	57 11 02
	10		Total Concentrate	57 11 02
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate		Blue Dye	Total Concentrate	57 11 02
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%)	1 fl oz		Total Concentrate	57 11 02
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other			Total Concentrate	57 11 02
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt	1 fl oz	fuel	Total Concentrate	57 11 02
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt Diluent	1 fl oz Diesel 3 gallo Autum Jap. H Privet	fuel ons in Olive loneysuckle	Total Concentrate	57 11 02
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other Other Other Rate/Amt Diluent Total Solution	1 fl oz Diesel 3 gallo Autum Jap. H Privet Multifle Not ma	fuel ons in Olive loneysuckle spp. ora Rose	e few invasives there were located	

CarSilv - 0239				
Client	Restor	ration Systems		
Project Site	Abbey	Lamm		
Date	07-20-	-2016		
Start Time	11:00		End Time	14:00
Only PAL for Site for This Day?		Yes	If NO, this is PAL # of ##	
Sky Cover	Clear		Temp (F)	93
Wind Direction	SW		Wind Speed	1-5 mph
Applicators		a G Merritt (NC 026-33717 er Sutto	7)	
Application Method	Basal	Bark		
Herbicide	Other	(see comments)		
Herbicide Rate (%)	15		Total Concentrate	60 fl oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other		Blue Dye		
Other Rate/Amt	1 fl oz			
Diluent	Diesel	fuel		
Total Solution	3 gallo	ons		
Species Controlled	Privet Tree-c	of-Heaven ora Rose		
Area Description	the ea preser	sement. Also, there was land	ent in the central wooded area on arge tree of heaven, autumn olive, easement next to the wooded area the down stream easement.	and paulownia
Additional Comments	Chemi	ical used was Garlon 4 (tri	clopyr)	

CarSilv - 0163				
Client	Restor	ration Systems		
Project SIte	Abbey	r Lamm		
Date	03-11-	-2016		
Start Time	8:00		End Time	15:30
Only PAL for Site for This Day?		Yes	If NO, this is PAL # of ##	
Sky Cover	Partly	Cloudy	Temp (F)	70
Wind Direction	Е		Wind Speed	Calm
Applicators	Willian	n A Skinner (NC 026-3200	3/VA 129456)	
Application Method	Foliar	Spray (ATV - Broadcast)		
Herbicide	Oust®	XP (sulfometuron methyl)		
Larbinida Data (0/)				00
Herbicide Rate (%)			Total Concentrate	30oz
Surfactant or Adjuvant (1)			Total Concentrate	300Z
			Total Concentrate	300Z
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate		Grounded (deposition a		300Z
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%)	8oz/ac			300Z
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other	8oz/ac Water			300Z
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt				300Z
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other Other Rate/Amt Diluent	Water	allon		300Z
Surfactant or Adjuvant (1) Surfactant/Adjudivant 1 Rate (%) Other Other Other Rate/Amt Diluent Total Solution	Water 125 ga	allon		300Z

Photo 1: Downstream end of the Main Stem looking upstream into the old pond bed

Photo 3: Downstream end of the Main Stem looking upstream into the old pond bed

